
Intermediate Presentation
SVBRDF Estimation using a Physically-based Differentiable Renderer

Markus Andreas Worchel

16.12.2019 Computer Graphics Project WS 2019/2020 1

Recap – Topic

16.12.2019 Computer Graphics Project WS 2019/2020 2

Physically-based
Differentiable Renderer

CNN

…

…

……

Recap – Schedule

• Download database

• Acquire testing and training code for the network

• Get familiar with papers, source code and data

• Acquire code for Mitsuba 2

• Replace rendering layers of the network with Mitsuba 2

• Evaluation (compare with unmodified method)

16.12.2019 Computer Graphics Project WS 2019/2020 3

Data

• Single-view database (87 GB)
• Input image and material

variations generated offline

• Reading implemented ✓

• Multi-view database (1.4 GB)
• Input images and material

variations generated at load time

• Reading (generation) not yet
implemented –

16.12.2019 Computer Graphics Project WS 2019/2020 4

Models

16.12.2019 Computer Graphics Project WS 2019/2020 5

• Single-view model (Deschaintre et al., 2018)
• Implement in pyTorch ✓

• Verify model using visualization in TensorBoard ✓

• Report bugs back to author ✓

• Multi-view model (Deschaintre et al., 2019)
• Implement in pyTorch ✓

→ Only 40 LoC more than single-view model

• Verify model using visualization in TensorBoard –

Training Loss

16.12.2019 Computer Graphics Project WS 2019/2020 6

?

Prediction Ground Truth

CNN … ……

Loss – From L1 to Mixed Loss

16.12.2019 Computer Graphics Project WS 2019/2020 7

• L1 loss between SVBRDF maps was implemented last time

𝐿1 ≔ − + − + − + −

• Now: Mixed Loss

𝐿 ≔ |𝑅 − 𝑅 |

rendering loss

+ 𝜆𝐿1

• Rendering operator 𝑅 requires scenes and a differentiable renderer

Loss – Renderer

• Implement simple differentiable renderer ✓
• Only considers direct illumination

• Lambertian diffuse term

• Cook-Torrance specular term

• Renders SVBRDF on flat material patch in the origin (virtual orthographic view)

16.12.2019 Computer Graphics Project WS 2019/2020 8

💡

Perspective Orthographic

Loss – Scenes

• One camera, one light ✓

• Random camera and light positions per sample in mini batch –
• Required for unbiased appearance comparison

• Currently only three fixed configurations:

16.12.2019 Computer Graphics Project WS 2019/2020 9

Loss – Results

16.12.2019 Computer Graphics Project WS 2019/2020 10

Input Ground Truth L1 Loss Mixed Loss (L1 + Rendering)

Replacing the Simple Renderer

16.12.2019 Computer Graphics Project WS 2019/2020 11

• Mitsuba 2 still not released
• Fall back to Redner ✓

• Redner is not compatible with Windows
• Patch Redner code (MSVC intrinsics, install script) ✓
• Send PR to upstream repository ✓

• Uses OpenEXR python bindings (no Windows compatibility)
• Patch OpenEXRPython code ✓
• Send PR to upstream repository ✓

• Redner GPU (CUDA) not compatible with Windows
• Patch Redner Code –
• Send PR to upstream repository –

Replacing the Simple Renderer – Challenges

16.12.2019 Computer Graphics Project WS 2019/2020 12

• Integration into rendering loss and current structure –
• Redner scene definition vs. my scene definition
• Virtual orthographic rendering

• Training time feasibility check –
• Path tracing is resource and time demanding
• GPU implementation is probably a must

• Evaluation –
• Full training of models
• Qualitative (and quantitative) comparison
• Training time comparison

Conclusion

• Still some work to do…
…but most difficult tasks are finished or basis is established

• Redner in action (path tracing our SVBRDFs):

16.12.2019 Computer Graphics Project WS 2019/2020 13

