

Technical Presentation

SVBRDF Estimation using a Physically-based Differentiable Renderer

Markus Andreas Worchel

Recap

Physically-based Differentiable Renderer

Deschaintre et al., 2018 (single view) 2019 (multi view)

- $f_r(\vec{\omega}_i, \vec{\omega}_o) \coloneqq$ "Fraction of the irradiance coming from $\vec{\omega}_i$ that is reflected towards $\vec{\omega}_o$ "
- Captures reflectance properties of the surface material

Spatially Varying BRDF

- Spatially varying reflectance properties $\rightarrow f_r(\vec{x}, \vec{\omega}_i, \vec{\omega}_o)$
- Surface is assumed to be heterogeneous
 - Small variations of the same material
 - Different materials

- Anisotropic microfacet model
 - Surface consists of small differently oriented microfacets ("bumps")
 - Only relative difference of $\vec{\omega}_i$ and $\vec{\omega}_o$ matters, not their absolute orientation
- Four parameter (maps), separation of diffuse and specular:

Diffuse Albedo

Specular Albedo

Specular Roughness

Normal

Network Architecture

Network Architecture – Generator

- Based on U-Net architecture for image-to-image transformation
- Additional track reinjects global information lost due to instance norm

- Given for each sample:
 - Ground truth SVBRDF maps D_G , S_G , R_G , N_G
 - Predicted SVBRDF maps D_P , S_P , R_P , N_P
- Loss function is $L \coloneqq L_{Rendering} + \lambda(L_D + L_S + L_R + L_N)$
- L_D , L_S , L_R , L_N are simple L1 losses between predicted and ground truth parameter maps: $L_I \coloneqq ||I_G I_P||_1$
- *L_{Rendering}* is a **rendering loss**: Compares rendered appearance

Training – Rendering Loss

4. Render object with predicted SVBRDF in all different configurations

5. Compare the rendered images (L1 loss)

Training – Rendering Loss

- Challenge: Loss must be differentiable → **differentiable rendering**
- Solution in the papers:
 - Simple tensorflow renderer \rightarrow Only direct illumination
 - Simple scene \rightarrow One flat plane, one light
- My goal:
 - Differentiable path tracer \rightarrow Global illumination
 - Arbitrary scene \rightarrow Flat plane, other objects, multiple lights, environment maps, ...

Current State – Generator

- Generator reimplemented in PyTorch
- Overfitting test (2000 epochs)
- 1 of 2 training samples (top)
- 1 test sample (bottom)
- Limitations:
 - 3 color channels per target image
 → 12 channels instead of 9
 - Simple L1 loss

Epoch: 1196