
Moment Bounds are Differentiable:

Efficiently Approximating Measures in Inverse Rendering

MARKUS WORCHEL, Technische Universität Berlin (TU Berlin), Germany

MARC ALEXA, Technische Universität Berlin (TU Berlin), Germany

R
en

de
r

fr
om

 P
er

sp
ec

ti
ve

 o
f L

ig
ht Primal Rendering

Query

Transmittance Map

Shadow Map

142.28 ms
(Render Map + Query)

TM-4

Derivative

2.70 ms 2.76 ms

MSMVSM
-

0

+

Fig. 1. We prove that moment-based bounds are differentiable. This enables various applications of approximate methods from real-time graphics in

differentiable rendering: we show differentiable transmittance mapping (“TM-𝑛”) akin to volumetric shadow mapping and differentiable shadow mapping for

triangle meshes. The suggested moment-based techniques (e.g.Moment ShadowMapping), are more principled, more accurate, and similarly efficient as

existing approaches (e.g. Variance ShadowMapping). The (forward) derivatives show the effect of moving the directional light source.

All rendering methods aim at striking a balance between realism and effi-

ciency. This is particularly relevant for differentiable rendering, where the

additional aspect of differentiablity w.r.t. scene parameters causes increased

computational complexity while, on the other hand, in the common applica-

tion of inverse rendering, the diverse effects of real image formation must

be faithfully reproduced. An important effect in rendering is the attenuation

of light as it travels through different media (visibility, shadows, transmit-

tance, transparency). This can be modeled as an integral over non-negative

functions and has been successfully approximated in forward rendering

by so-called moments. We show that moment-based approximations are

differentiable in the parameters defining the moments, and that this leads

to efficient and practical methods for inverse rendering. In particular, we

demonstrate the method at the examples of shadow mapping and visibility

in volume rendering, leading to approximations that are similar in efficiency

to existing ad-hoc techniques while being significantly more accurate.

CCS Concepts: • Computing methodologies→ Rendering; •Mathemat-
ics of computing→Mathematical analysis.

Additional Key Words and Phrases: differentiable rendering, shadows

Authors’ addresses: Markus Worchel, Technische Universität Berlin (TU Berlin), Berlin,

Germany, m.worchel@tu-berlin.de; Marc Alexa, Technische Universität Berlin (TU

Berlin), Berlin, Germany, marc.alexa@tu-berlin.de.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

0730-0301/2025/8-ART

https://doi.org/10.1145/3730899

ACM Reference Format:
Markus Worchel and Marc Alexa. 2025. Moment Bounds are Differentiable:

Efficiently ApproximatingMeasures in Inverse Rendering.ACMTrans. Graph.

44, 4 (August 2025), 21 pages. https://doi.org/10.1145/3730899

1 INTRODUCTION

Differentiable renderers are an integral part of solutions to inverse

rendering problems – problems in which information about a scene

is recovered solely from images. If the observations are captured

from the real world, one strives for a differentiable renderer that is

capable of reproducing the various effects of physical light trans-

port. As in forward rendering, the accuracy of these sophisticated

rendering systems comes at the price of efficiency.

The complete picture shows that most applications require a

differentiable renderer that strikes a good balance between accuracy

and efficiency. Countless approximations from real-time graphics

have been adopted in the inverse setting and form the foundation

of practical differentiable rendering systems in 3D vision, graphics,

and machine learning.

Many of these techniques are trivially differentiable and can be

readily transferred, such as approximations for image-based light-

ing [Munkberg et al. 2022], shading models [Gao et al. 2022; Zhang

et al. 2021], or texture mapping [Laine et al. 2020]. For other tech-

niques, this is less obvious and naturally leads to the question: which

rendering approximations are differentiable?

In this work, we seek an answer to the question for a family of ap-

proximations that bound measures, which, in the simplest case, can

be understood as non-negative, non-decreasing functions. Various

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

HTTPS://ORCID.ORG/0000-0002-3469-6750
HTTPS://ORCID.ORG/0000-0002-9854-8466
https://orcid.org/0000-0002-3469-6750
https://orcid.org/0000-0002-9854-8466
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3730899
https://doi.org/10.1145/3730899

2 • Worchel and Alexa

problems in graphics can be cast in this framework, most notably, the

visibility between a light and a point in the scene, which, arguably,

is the most important information for the effect of the light source

on the rendered image. Ignoring the visibility in inverse settings

is acceptable only in very restrictive setups (e.g. with co-located

camera and light [Luan et al. 2021; Zhang et al. 2022]).

Bounds tomeasures have previously been studied for approximate

rendering using the theory of moments [Münstermann et al. 2018;

Peters and Klein 2015; Peters et al. 2019] (Section 3).

Computing moment-based approximations, e.g. for visibility, is,

compared to other approximate rendering techniques, quite involved

such that differentiability is not apparent. Additionally, the represen-

tation has singularities, which could not only represent discontinu-

ity points but evaluating the bound in their vicinity is numerically

challenging. We prove that the bounds to measures derived from

power moments are continuously differentiable (Section 4).

The study of differentiability reveals the behavior of the bound

and its derivatives near singularities, which leads to an efficient and

robust implementation of differentiable moment bounds (Section 5).

The proof justifies using various moment-based approximations

in differentiable rendering (Section 6): for differentiable shadow

mapping (Section 6.1), we use Moment Shadow Mapping [Peters

and Klein 2015], which generalizes existing differentiable shadow

mapping techniques [Donnelly and Lauritzen 2006; Worchel and

Alexa 2023], and show that it is an efficient and more accurate

approach. For differentiable visibility in volume rendering (Sec-

tion 6.2), we use classical work on moment-based transmittance

estimation [Münstermann et al. 2018; Peters et al. 2016] and show

that even the lowest quality approximation is as fast as existing

ad-hoc approximations while being significantly more accurate.

We conclude with limitations and future avenues (Section 7).

2 RELATED WORK

The techniques presented in our applications (Section 6) are re-

lated to approaches in vision and graphics, and contribute to the

current state of the field. We, however, delay the discussion to the

appropriate sections and take a more general perspective here.

Moment-based Bounds in Graphics. The study of moments dates

back at least to the 19th century. For brevity, we will limit our

discussion to moment-based bounds with a focus on graphics.

Moment-based approximations were introduced to graphics by

Donelly and Lauritzen [2006] for real-time shadowmapping, with ex-

tensions explored by Salvi [2008] and introduced in the general form

by Peters and Klein [2015] with Moment Shadow Mapping. Their

main algorithm computes bounds from four power moments and

is derived from the conditions in the classical literature [Akhiezer

1965; Akhiezer and Kreı̆n 1962; Kreı̆n and Nudel’man 1977].

Later, moment-based bounds have been used for different approx-

imations in graphics, including estimating volume transmittance

for shadows [Peters et al. 2016] or for order-independent trans-

parency [Münstermann et al. 2018; Sharpe 2018].

Our work extends this line to the differentiable setting: to the

best of our knowledge, we are the first to show that the lower and

upper bounds, as stated by Tari [2005] for the infinite case, are con-

tinuously differentiable functions in all parameters. Our proof is a

generalization of the result by Worchel and Alexa [2023], who con-

sider the special case of Variance Shadow Mapping [Donnelly and

Lauritzen 2006]. It follows that manymoment-based approximations

can be directly combined with differentiable rendering.

Differentiable Rendering and Approximations. Physically-based

differentiable rendering simulates light transport [Jakob et al. 2022b;

Li et al. 2018; Nimier-David et al. 2019; Zhang et al. 2020], which,

despite significant advances in efficiency [Jakob et al. 2022a; Nimier-

David et al. 2020; Vicini et al. 2021], still does notmatch the efficiency

of differentiable rasterization [Laine et al. 2020; Liu et al. 2019].

In practice, differentiable rendering is often combined with ap-

proximations, for illumination [Hasselgren et al. 2022; Munkberg

et al. 2022], materials [Gao et al. 2022; Zhang et al. 2021], visibil-

ity [Yang et al. 2022], or even by modeling light transport entirely

with neural networks [Worchel et al. 2022; Yariv et al. 2020].

Our work contributes to approximate differentiable rendering in

two ways. First, by proving the differentiability of moment-based

bounds, which underly a family of approximate rendering tech-

niques, we justify their usage in the differentiable setting. Second,

as an immediate consequence, we show that these techniques im-

prove over previous methods in two applications, differentiable

shadow mapping and differentiable transmittance approximation.

Forward rendering systems have been transformed to differen-

tiable variants using differentiable shading languages [Bangaru et al.

2023] or stochastic gradient estimates [Deliot et al. 2024]. The burden

of investigating approximate rendering techniques for differentiabil-

ity, however, remains because applying automatic differentiation to

a function does not necessarily lead to useful gradients: the prime

example in differentiable rendering is discontinuous visibility.

3 BOUNDING MEASURES WITH MOMENTS

Given a non-negative function 𝑓 (𝑧) on R with

∫ ∞
−∞ 𝑓 (𝑧) d𝑧 > 0. We

are interested in the integral

𝐹 (𝑥) =
∫ 𝑥

−∞
𝑓 (𝑧) d𝑧, (1)

which is non-negative and non-decreasing. For example, we may

encounter such integrals in volume rendering, as part of the trans-

mittance, where 𝑓 is the attenuation coefficient along a ray

𝑇 (𝑥) = exp

(
− 𝐹 (𝑥)

)
= exp

(
−
∫ 𝑥

0

𝑓 (𝑧) d𝑧
)
, (2)

and the lower limit is adjusted to 0, assuming zero attenuation in

the negative ray direction. Now, consider the following task: from

𝑓 derive a compact representation, i.e., a small set of scalar values,

from which the measure 𝐹 (𝑥) can be approximated. A practical

motivation could be efficiency, if the transmittance is repeatedly

evaluated at different points, given that the approximation can be

evaluated faster than the integral.

This task may be approached using different classical techniques,

including the representation of 𝐹 or 𝑓 in a (polynomial) function

space. For many techniques, it is unclear how the essential proper-

ties of 𝑓 (non-negative) or 𝐹 (non-decreasing) could be preserved:

transmittance ranges from 0 to 1, but approximations could yield

values beyond 1 (approximation of 𝐹 is negative) or decrease along

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Moment Bounds are Differentiable • 3

the ray. This causes (visual) artifacts in the best case but generally

leads to undefined behavior as assumptions about 𝑇 do not hold.

A suitable tool for studying and approximating integrals of non-

negative functions is the theory ofmoments. Consider a non-decreasing

measure 𝜇 (𝑥)1 and the Riemann-Stieltjes integral

𝑚𝑖 =

∫ ∞

−∞
𝑧𝑖 d𝜇 (𝑧), 0 ≤ 𝑖 ≤ 𝑛. (3)

Characterizing, and in particular, recovering 𝜇 from the power mo-

ments𝑚𝑖 is known as themoment problem. Specifically, the instance

considering a finite set of moments and the real line is known as

the truncated Hamburger moment problem. The measure 𝜇 (𝑥) cor-
responds to 𝐹 (𝑥) from above but this form is more general, as it

includes measures that do not admit a representation with a function

𝑓 , such as the step function.

In general, a measure cannot be uniquely determined from a finite

set of moments because different measures can generate the same

moments. Yet, it is possible to generate lower and upper bounds for

the set of measures that are representations
2
of the given moments:

𝐿(𝑥) = inf

{
𝜇 (𝑥)

���𝑚𝑖 = ∫ ∞

−∞
𝑧𝑖 d𝜇 (𝑧)

}
(Lower bound)

𝑈 (𝑥) = sup

{
𝜇 (𝑥)

���𝑚𝑖 = ∫ ∞

−∞
𝑧𝑖 d𝜇 (𝑧)

}
. (Upper bound)

(4)

Quite surprisingly, these bounds can be efficiently computed under

mild assumptions on the moments [Tari et al. 2005] and in graphics

they have been used in efficient methods for shadow mapping [Pe-

ters and Klein 2015; Peters et al. 2016] and order-independent trans-

parency [Münstermann et al. 2018]. We only consider even orders

2𝑛, i.e., an odd number of moments𝑚0,𝑚1, . . . ,𝑚2𝑛 for 𝑛 > 0.

3.1 A Geometric Perspective and General Observations

We think it is helpful to introduce an intuitive, geometric perspective

on moment-based bounds. Consider the following curve in R2𝑛+1

u(𝑡) =
(
1 𝑡 𝑡2 . . . 𝑡2𝑛

)⊤
, −∞ < 𝑡 < ∞, (5)

in the affine hyperplane (1 0 0 . . . 0)⊤x = 1. Using u(𝑡), the
integral in Equation (3) can be re-written in vector notation as

m =

∫ ∞

−∞
u(𝑧) d𝜇 (𝑧), (6)

so the moment sequence is a point in R2𝑛+1

m =
(
𝑚0 𝑚1 . . . 𝑚2𝑛

)⊤
. (7)

If 𝜇 is viewed as a measure of physical mass distributed along

the curve, normalized such that the total mass is

∫ ∞
−∞ d𝜇 (𝑧) =

𝑚0 = 1, then the point m is simply the center of mass. More gen-

erally, the set of moments to all non-decreasing measures is the

convex hull of the curve u(𝑡) [Riesz 1911]. The inset visualizes a

m

u(t) Mass d (t)
mass distribution on the curve of order two u(𝑡) =(
1 𝑡 𝑡2

)⊤
. If the requirement of normalized

distributions is dropped, the set of moments is the

cone formed by the rays from the origin through

the convex hull of the curve – the conic hull of

u [Kreı̆n and Nudel’man 1977, Theorem 3.4, p.15].

1
This definition of “measure” follows the conventions by Kreı̆n and Nudel’man [1977].

2
A measure 𝜇 is a “representation” of a moment vector m if it fulfills Equation (6).

A central observation in the theory of moments is that integrals

of polynomials are exactly expressible in the moments m for any

measure 𝜇 that is a representation of them. Given a polynomial

𝑝 (𝑥) = ∑𝑘
𝑖=0

𝑎𝑖𝑥
𝑖
, with 𝑘 ≤ 2𝑛, its integral is∫ ∞

−∞
𝑝 (𝑥) d𝜇 (𝑥) =

∫ ∞

−∞

𝑘∑︁
𝑖=0

𝑎𝑖𝑥
𝑖
d𝜇 (𝑥) =

𝑘∑︁
𝑖=0

𝑎𝑖𝑚𝑖 . (8)

For a moment sequence m = (𝑚0, . . . ,𝑚2𝑛) and a vector of polyno-

mial coefficients a = (𝑎0, . . . , 𝑎2𝑛), 𝑎 𝑗>𝑘 = 0 the operator

𝔖m{𝑝} = a⊤m (9)

provides the exact integral of 𝑝 for any 𝜇 being a representation of

m [Kreı̆n and Nudel’man 1977, p.58], and leads to a key property:

Definition 1. A moment sequence m = (𝑚0, . . . ,𝑚2𝑛) is called
strictly positive if from 𝑝 (𝑥) ≥ 0 (𝑝 . 0) it follows that𝔖m{𝑝} > 0.

Strict positivity has an intuitive interpretation: the polynomial

coefficients represent a vector a ∈ R2𝑛+1
and the condition 𝑝 (𝑥) =∑𝑘

𝑖=0
𝑎𝑖𝑥

𝑖 = a⊤u(𝑥) ≥ 0 is fulfilled if the curve u lies in the closed

upper half-space of the hyperplane a⊤x = 0. In other words, it is

fulfilled if a defines a support hyperplane for the conic hull of the

curve. The condition𝔖m{𝑝} > 0 is equivalent to a⊤m > 0, which

demands that m does not lie on the support hyperplane: a strictly

positive moment sequence lies inside the conic hull of u(𝑡).
Strictly positive moments m are important because they can be

represented as conical combinations of points on the moment curve:

Theorem 1 ([Akhiezer and Kreĭn 1962, Theorem 3a, p.8]). If m
is strictly positive, there exist infinitely many canonical representations

m =

𝑛∑︁
𝑖=0

𝑤𝑖u(𝑥𝑖),

with𝑤𝑖 > 0 the weights and 𝑥𝑖 ∈ (−∞,∞) the roots (𝑥𝑖 ≠ 𝑥 𝑗).

We will later show that it is natural to identify the 𝑥𝑖 as the zeros

of a polynomial, hence the name. The importance is that any point

m ∈ R2𝑛+1
strictly inside the conic hull can be represented by the

(strictly) conical combination of 𝑛 + 1 points on the curve. Note

that 𝑛 + 1 is roughly half the embedding dimensions of the curve.

Applied to the physical example above, the theorem states that there

are infinitely many ways of concentrating mass in at most 𝑛 + 1

points on the curve, which result in the same center of mass. The

infinite set is a one-parameter family:

Theorem 2 ([Akhiezer and Kreĭn 1962, Theorem 3c, p.8]). If m
is strictly positive, for any value 𝜂 ∈ R \𝐴, there is a unique canonical
representation of m where 𝜂 is one of the 𝑛 + 1 roots.

𝐴 is a small, finite set that depends on the moments and we delay

the discussion to Section 4.1.1. Geometrically, given a point on the

curve u(𝜂), 𝑛 unique points {u(𝑥𝑖)}𝑛
1
on the curve can be found so

that their weighted combination yields m.

The unique canonical representation is associated with a piece-

wise constant measure 𝜇𝜂 (𝑥), increasing in the discrete set of the

𝑛+1 points, where 𝑑𝜇𝜂 (𝑥) consists of 𝑛+1 Dirac distributions placed

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

4 • Worchel and Alexa

at 𝜂 and the {𝑥𝑖 }:∫ 𝑦

−∞
u(𝑥) d𝜇𝜂 (𝑥) =

∫ 𝑦

−∞

𝑛∑︁
𝑖=0

𝑥𝑖<𝑦

𝛿 (𝑥 − 𝑥𝑖)𝑤𝑖u(𝑥) d𝑥 =

𝑛∑︁
𝑖=0

𝑥𝑖<𝑦

𝑤𝑖u(𝑥𝑖) .

(10)

The measure 𝜇𝜂 is important because it defines a bound on the set

of all measures consistent with a given set of moments:

Theorem 3 ([Kreĭn and Nudel’man 1977, Theorem 3.1, IV.§3,

p.125], Chebyshev-Markov inequalities). Let 𝜇 be any measure

with the same moments as 𝜇𝜂 , then∫ 𝜂−0

−∞
d𝜇 (𝑥) ≥

∫ 𝜂−0

−∞
d𝜇𝜂 (𝑥)∫ 𝜂+0

−∞
d𝜇 (𝑥) ≤

∫ 𝜂+0

−∞
d𝜇𝜂 (𝑥)

Remark 1. The notation follows Kreı̆n and Nudel’man [1977, p.15]:

the first inequality considers the mass in the interval (−∞, 𝜂) and the
second inequality the mass in the interval (−∞, 𝜂].

With the discrete representation from Eq. (10), this yields an

explicit expression for the bounds [Tari 2005, Corollary 2.7]:∫ 𝜂−0

−∞
d𝜇 (𝑥) ≥

𝑛∑︁
𝑖=1

𝑥𝑖<𝜂

𝑤𝑖 = 𝐿(𝜂)

∫ 𝜂+0

−∞
d𝜇 (𝑥) ≤ 𝑤0 +

𝑛∑︁
𝑖=1

𝑥𝑖<𝜂

𝑤𝑖 = 𝑈 (𝜂)
(11)

Computing the bounds from Eq. (4) therefore boils down to comput-

ing the unique canonical representation consisting of the weights

{𝑤𝑖 } and the roots {𝑥𝑖 } given 𝜂.

3.2 Computing the Unique Canonical Representation

If 𝜂 is identified with 𝑥0, the unique canonical representation is the

solution of a system of 2𝑛 + 1 equations (c.f. Theorem 1)

𝑚𝑘 =

𝑛∑︁
𝑖=0

𝑤𝑖𝑥
𝑘
𝑖 , 𝑘 = 0, . . . , 2𝑛 (12)

in 2𝑛 + 1 unknowns: the 𝑛 + 1 weights and the 𝑛 points 𝑥1, . . . , 𝑥𝑛
(because 𝜂 = 𝑥0 is given). Maybe surprisingly, the computation of

the points and weights can be separated, and it is possible to solve

for the points 𝑥𝑖 not knowing the weights𝑤𝑖 . Once all 𝑥𝑖 are given,

solving for the weights is just a linear system of equations. The

equations in this section are provided without proof, and details can

be found in the work by Tari [2005].

The main tool is the Hankel matrix of the moments

H =

𝑚0 𝑚1 . . . 𝑚𝑛

𝑚1 𝑚2

.

.

.

.

.

.
. . .

𝑚𝑛 . . . 𝑚2𝑛

, (13)

which also indicates strict positivity of m:

z0 z1 z2z3 z4

n = 1 n = 2 n = 3

(x)

d (x)

L(x)

z0L

Ref.
(FD)

Fig. 2. A discrete measure 𝜇 with five points of increase 𝑧0, . . . , 𝑧4 ∈ R. Top
row: the lower bound 𝐿 for different degrees, corresponding to 3, 5, and 7

moments, respectively. Bottom row: the derivative of the lower bound for

the point 𝑧0, which affects the moments. The bound and its derivatives are

continuous. The dashed vertical lines mark singularity points of the bound.

Theorem 4 ([Akhiezer and Kreĭn 1962, Theorem 1, p.3]). For a

moment sequence to be strictly positive, it is necessary and sufficient

that the Hankel matrix is positive definite.

With the shorthand notation

x ≜
(
1 𝑥 . . . 𝑥𝑛

)⊤
, (14)

the {𝑥𝑖 } can be computed as solutions to

x⊤𝑖 H−1x0 = x⊤𝑖 H−1𝜼 = 0, 𝑖 > 0. (15)

This relates the unknown 𝑥𝑖 to the known quantities 𝜂 and H: the

points {𝑥𝑖 } are the roots of the so-called kernel polynomial

𝐾 (𝑥) = x⊤H−1𝜼 =

𝑛∑︁
𝑘=0

𝑥𝑘 (H−1𝜼)𝑘 . (16)

Therefore, finding the 𝑛 points 𝑥𝑖 of the unique canonical represen-

tation given 𝑥0 = 𝜂 amounts to finding the roots of the 𝑛-degree

kernel polynomial. If m is strictly positive and 𝜂 ∉ 𝐴, the roots are

real and simple, i.e., 𝐾 has a set of 𝑛 distinct roots (Corollary 19).

With all points 𝑥𝑖 , the weights can be either computed by solving

the (reduced) Vandermonde system in Eq. (12) or individually as

𝑤𝑖 =
1

x⊤
𝑖

H−1x𝑖
. (17)

4 DIFFERENTIATING MOMENT-BASED BOUNDS

The approach detailed in Section 3 gives rise to two functions that,

depending on an evaluation point 𝜂 ∈ R and a sequence of moments

m ∈ R2𝑛+1
, compute an upper and a lower bound on all measures 𝜇

that are representations of the moments. When viewed as a function

in all parameters, the lower bound takes the form (c.f. Eq. (11))

𝐿(𝜂; m) =
𝑛∑︁
𝑖=1

𝑥𝑖 (𝜂;m)<𝜂

𝑤𝑖 (𝜂; m), (18)

where the𝑤𝑖 are the weights and the 𝑥𝑖 are the points of the unique

canonical representation. The upper bound includes the weight of 𝜂

𝑈 (𝜂; m) = 𝑤0 (𝜂; m) + 𝐿(𝜂; m) (19)

If one intends to use the lower or upper bounds in a differentiable

setting, one may ask if these functions are differentiable in m and 𝜂.

It turns out that the answer to this question is difficult to find in the

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Moment Bounds are Differentiable • 5

given form, in particular, because the number of terms in the sum in

𝐿 varies depending on both, m and 𝜂.

Worchel and Alexa [2023] have shown that a special case of

the lower bound is continuously differentiable, in particular, the

visibility function from Variance Shadow Mapping [Donnelly and

Lauritzen 2006]. This function is based on Chebyshev’s inequality

and is a special case of the lower bound for probability measures

and m = (1,𝑚1,𝑚2). We generalize this result to sequences with an

arbitrary number of moments (see the example in Figure 2).

The proof can be broken down into the following high-level parts:

(1) Section 4.1: we partition the space R × R2𝑛+1
into regions

where 𝐿 is defined and regions where it is not, and show

that 𝐿 is trivially differentiable in the regions that form its

domain. A key observation is that the number of terms in

the bound, i.e., the number of summed weights (c.f. Eq.18)

remains constant inside of the valid regions.

(2) Section 4.2: we then analyze the behavior of the bound as

one approaches the boundary between two regions. The main

insight is that at each transition between distinct regions only

one weight is included or excluded from the sum in 𝐿.

(3) Section 4.3: finally, we show that not only the weight but

also its derivative with respect to m and 𝜂 vanish: the limit

exists, so the singularities at region boundaries are removable,

which makes 𝐿 (and 𝑈) continuously differentiable in their

domain and across the singular points.

Since the position of 𝜂 among the other roots is relevant in the

following, we assume, for this section, that all roots, including 𝜂, are

ordered from lowest to highest, i.e., 𝑥0 < · · · < 𝑥 𝑗 (= 𝜂) < · · · < 𝑥𝑛 .

4.1 Partitioning the Domain

Themain difficulty with the bound 𝐿 and its derivative is the varying

number of summed weights (c.f. Equation (18)): including a weight

is a binary decision that can lead to discontinuities in the function or

its derivative. The central idea is to first dissect the space R×R2𝑛+1

into regions with a constant number of terms. Inside of these regions,

differentiability can be easily investigated in terms of the𝑤𝑖 .

4.1.1 Regions with Constant Number of Terms. According to Theo-

rem 1, canonical representations, in particular the unique one that

defines the bound 𝐿, only exist for strictly positive moments m.

Moreover, Theorem 2 indicates that there is the additional restric-

tion of 𝜂 ∉ 𝐴: 𝐴 contains the 𝑛 simple roots of a special degree-n

polynomial 𝑃𝑛 (𝑥 ; m). This characterizes the domain of 𝐿:

Ω = {(𝜂,m) ∈ R × R2𝑛+1
: positive(m) ∧ 𝑃𝑛 (𝜂; m) ≠ 0}. (20)

At any given point (𝜂0,m0) ∈ Ω the bound 𝐿 will be a sum

over some number of terms, so, under which conditions does the

number change if one moves to another point (𝜂1,m1) ∈ Ω, on a

continuously differentiable path? The answer is our first result:

Theorem 5. If the number of terms in the bounding functions differs

between two points (𝜂0,m0) ∈ Ω and (𝜂1,m1) ∈ Ω, any continuously
differentiable path connecting the points crosses at least one point

(𝜂′,m′) ∈ R × R2𝑛+1
where either 𝜂′ is a root of 𝑃𝑛 (𝑥 ; m′) or the

sequence of moments m′ is not strictly positive.

The proof can be found in Appendix C, Section C.3. It exploits that

the number of terms changes if and only if one of the {𝑥𝑖 } changes
its place with 𝜂 on the real line. The points {𝑥𝑖 } and 𝜂 are the roots

of an orthogonal polynomial 𝜓𝑛+1 (𝑥 ;𝜂,m), which has 𝑛 + 1 real

and simple roots in the domain Ω. Since the roots are continuously
differentiable functions in m and 𝜂, the {𝑥𝑖 } and 𝜂 can only change

their order outside of the domain Ω. The inset visualizes the theorem
and shows the evolution of the roots

on a continuously differentiable path

𝜸 (𝜏) ∈ R × R2𝑛+1
from a point

(𝜂0,m0) ∈ Ω to a point (𝜂1,m1) ∈ Ω.
Red trajectories cannot be taken in Ω.

Geometrically, strict positivity can

be violated on a path when moments m cross through u(𝜂) on the

boundary of the moment curve (more generally boundary regions

on the cone) or due to numerical inaccuracy. But, strict positivity

can be enforced by biasing [Peters and Klein 2015]: the moments m
are slightly “pulled” inside of the conic hull, away from its boundary.

Proposition 6. If 𝛼 ∈ (0, 1] and m★ ∈ R2𝑛+1
is a bias vector such

that (1 − 𝛼)m + 𝛼m★
is strictly positive, the number of terms in the

bounding functions changes only in points where 𝜂 is a root of the

polynomial 𝑃𝑛 (𝑥 ; (1 − 𝛼)m + 𝛼m★).

Therefore, one can see the domain Ω as a partition of regions

where 𝜂 is not a root of 𝑃𝑛 , and inside of each region, the number

of terms in 𝐿 remains constant.

4.1.2 Differentiable Weights. Each region of the domain Ω has a

fixed number of terms, so, inside of it, the derivative of 𝐿 simply

reduces to the sum of derivatives of the weights𝑤𝑖 , and we observe:

Theorem 7. For (𝜂,m) ∈ Ω the weights 𝑤0, . . . ,𝑤𝑛 associated

with all points of the unique canonical representation are continuously

differentiable in m and 𝜂.

See Appendix C, Section C.4 for the (short) proof; it follows:

Corollary 8. The bounding functions 𝐿(𝜂,m) and 𝑈 (𝜂,m) are
continuously differentiable in their domain Ω.

4.2 Approaching Singularities

Although having established differentiability on the domain of 𝐿 in

Section 4.1, the result does not rule out discontinuities at points in

Λ = {(𝜂,m) ∈ R × R2𝑛+1
: positive(m) ∧ 𝑃𝑛 (𝜂; m) = 0}, (21)

which is the set of points with strictly positive m but 𝜂 is a root of

𝑃𝑛 . Recall that the bounding functions are undefined at these points.

In the following, we investigate the behavior of the points 𝑥𝑖 as a

point (𝜂,m) ∈ Ω in the domain of 𝐿 approaches such singularities.

The polynomial 𝑃𝑛 (𝑥,m) is part of a sequence of polynomials

{𝑃𝑖 }, which are pairwise orthogonal under measures that are rep-

resentations of m. As an orthogonal polynomial, 𝑃𝑛 has 𝑛 real and

simple roots {𝑦𝑖 }𝑛
1
: at a point (𝜂,m) ∈ Ω, 𝜂 must lay between at

most two roots of 𝑃𝑛 , in either of the intervals (−∞, 𝑦1), (𝑦 𝑗 , 𝑦 𝑗+1),
or (𝑦𝑛,∞).

Geometrically, one can think of the roots as𝑛 distinct points u(𝑦𝑖)
on the moment curve, with u(𝜂) between (at most) two of them.

The situation 𝑃𝑛 (𝜂; m) = 0 can now arise in different ways: (1) the

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

6 • Worchel and Alexa
V

ar
yi

ng

u(t)

m
u()

u(x1)

u(y1)Singularity

V
ar

yi
ng

 m

m

Fig. 3. Geometric relationship between the points of the canonical represen-

tation 𝜂 and 𝑥1 for a moment sequence m = (1,𝑚1,𝑚2) and the singularity

point 𝑦1, a root of 𝑃𝑛 . The first dimension is omitted. First row:𝜂 approaches

𝑦𝑖 . Second row: 𝑦𝑖 approaches 𝜂 as the moments are varied.

point u(𝜂) moves towards one of the two roots on the curve, (2)

one of the two points moves towards u(𝜂) on the curve, or (3) a

combination of the two. Figure 3 shows the behavior of the roots:

Theorem 9. If 𝑥 𝑗 (= 𝜂) < 𝑥𝑛 approaches 𝑦 𝑗+1 on a continuously

differentiable path, then 𝑥𝑛 →∞. If 𝑥 𝑗 (= 𝜂) > 𝑥0 approaches 𝑦 𝑗 on

a continuously differentiable path, then 𝑥0 → −∞.

The proof is found in Appendix C,

Section C.5. It exploits that the points

{𝑥𝑖 }𝑛
0
(including 𝜂) strictly interlace

with the roots {𝑦𝑖 }𝑛
1
of 𝑃𝑛 in the do-

main Ω. At singularities, 𝑛 of the

points {𝑥𝑖 } collapse to the 𝑛 roots

{𝑦𝑖 } of 𝑃𝑛 (see inset). As the {𝑥𝑖 } and the roots {𝑦𝑖 } are contin-

uously differentiable functions in (𝜂,m), a path 𝜸 (𝜏) from a point

(𝜂0,m0) ∈ Ω to a singularity point (𝜂1,m1) ∈ Λ is reversible, so

each {𝑦𝑖 } at the singularity corresponds exactly to one {𝑥𝑖 }. This
leaves one of the outer points 𝑥0 or 𝑥𝑛 (≠ 𝜂) without a correspond-

ing root at the singularity, and it must go to ±∞. Since the theorem
considers both directions, we can state the following:

Corollary 10. If 𝑥 𝑗 (= 𝜂) > 𝑦 𝑗 follows a continuously differen-

tiable path through 𝑦 𝑗 such that after the singularity 𝑥 𝑗−1 (= 𝜂) < 𝑦 𝑗 ,
then the point 𝑥0 goes to −∞ and reappears as 𝑥𝑛 from∞. The other
direction of 𝑥 𝑗 approaching 𝑦 𝑗+1 behaves analogously.

Therefore, when crossing a singularity, exactly one root𝑥𝑖 changes

its place with 𝜂, so for the sum in 𝐿 (c.f. Eq. 18) the following holds:

Corollary 11. As 𝜂 follows a continuously differentiable path

through a singularity, only the weight associated with 𝑥0 or 𝑥𝑛 is

included in or excluded from the sum in the bounding functions.

The last observation is essential as it allows studying only one of

the weights and its derivatives to determine the limit behavior for

the bounding functions 𝐿 and𝑈 .

4.3 Weight (Derivative) at Singularities

In Section 4.1 we have shown that 𝐿 is continuously differentiable

on its domain Ω but the domain is a collection of distinct regions,

connected by singularities at which 𝐿 is undefined, not ruling out

discontinuous behavior across singularities. We have then observed

in Section 4.2 that when singularities are crossed, exactly one of

the points 𝑥𝑘 ∈ {𝑥𝑖 } switches places with 𝜂, and therefore only

its weight 𝑤𝑘 is included or excluded from the sum in 𝐿 (recall

Eq. 18). It remains to investigate how the weight and its derivative,

and therefore 𝐿 and its derivative, behave when a singularity is

approached, which is equivalent to studying their limit as 𝑥𝑘 → ±∞
(c.f. Theorem 9).

The possible outcomes are apparent: if the weight𝑤𝑘 , in the limit,

goes to zero, the singularities in 𝐿 are removable. If additionally

the derivatives
𝜕𝑤𝑘

𝜕𝜂 and
𝜕𝑤𝑘

𝜕𝜂 go to zero, the singularities in the

derivatives
𝜕𝐿
𝜕𝜂 and

𝜕𝐿
𝜕m are removable. Otherwise, 𝐿 or its derivatives

will be discontinuous. We make the following two observations

(proven in Appendix C, Sections C.6 and C.7):

Lemma 12. If 𝑥𝑘 is the point that goes to ±∞, then the associated

weight𝑤𝑘 goes to zero.

Lemma 13. If 𝑥𝑘 is the point that goes to ±∞, then the associated

derivatives of the weight
𝜕𝑤𝑘

𝜕𝜂 and
𝜕𝑤𝑘

𝜕m go to zero.

The proofs use the fact that both the weight and its derivatives

are rational functions in 𝑥𝑘 , where the denominator has a (much)

higher degree than the numerator, so they vanish as 𝑥𝑘 → ±∞. We

conclude this section with our main result:

Theorem 14. The bounding functions 𝐿(𝜂; m) and 𝑈 (𝜂; m) are
continuously differentiable on their domains Ω and the singularities

are removable so that 𝐿 and𝑈 are continuously differentiable over the

set Ω ∪ Λ ⊂ R × R2𝑛+1
, with all strictly positive moments.

5 IMPLEMENTATION

Algorithm 1 computes the moment bounds (the primal algorithm)

and loosely follows Münstermann et al. [2018, Algorithm 1], where

𝛽 blends between the lower and upper bound. We have not yet ma-

terialized all operations (e.g. root finding) because, as will be shown,

the choice significantly affects the stability of the primal algorithm

and its derivative, which is calculated by the adjoint algorithm.

Algorithm 1Computing a moment-based bound (primal algorithm)

Inputs: moments m = (𝑚0, . . . ,𝑚2𝑛), evaluation point 𝜂, overesti-

mation weight 𝛽 ∈ [0, 1], bias 𝛼 ∈ [0, 1]
Output: bound 𝑏 = (1 − 𝛽)𝐿 + 𝛽𝑈

m← (1 − 𝛼)m + 𝛼m★ ⊲ Biasing (Prop. 6)

H← hankel_matrix(m) ⊲ Eq. (13)

c← cholesky_solve(H, (1, 𝜂, 𝜂2, . . . , 𝜂𝑛)⊤) ⊲ Eq. (16)

𝑥1, . . . , 𝑥𝑛 ← find_polynomial_roots(c) ⊲ Eq. (15)

m̄← (𝑚0, . . . ,𝑚𝑛)
𝑤0, . . . ,𝑤𝑛 ← vandermonde_solve(𝜂, 𝑥1, . . . , 𝑥𝑛, m̄) ⊲ Eq. (12)

𝑏 ← 𝛽𝑤0

for 𝑖 = 1, . . . , 𝑛 do
if 𝑥𝑖 < 𝜂 then

𝑏 ← 𝑏 +𝑤𝑖
return 𝑏

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Moment Bounds are Differentiable • 7

Automatic Differentiation. Algorithm 1 can be readily implemented

in an automatic differentiation (AD) framework like PyTorch [Paszke

et al. 2019]: a Cholesky solver is available, the roots can be deter-

mined in closed-form or, for high degrees, as the eigenvalues of the

companion matrix (as in numpy [Harris et al. 2020]), and a generic

linear solver can be used for the Vandermonde system.

While this straightforward implementation is a useful reference,

it is numerically unstable and inefficient, both in terms of memory

consumption and runtime. Improving the stability requires careful

consideration of the numerically critical parts (Section 5.1). The de-

rived primal and adjoint algorithms can be efficiently implemented

by fusing all operations, avoiding the construction of a computation

graph as in automatic differentiation (Section 5.2).

5.1 Explicit Algorithm and Reverse-Mode Differentiation

In this section, we will gradually materialize Algorithm 1, one oper-

ation at a time, and derive expressions for reverse-mode derivatives.

This leads to concrete primal and adjoint algorithms. We will use the

notation 𝛿𝑎 to denote the adjoint of a variable 𝑎, i.e., the derivative
𝜕L
𝜕𝑎 w.r.t. a scalar function L(𝑎), which could be the loss function

in a gradient-based optimization. We assume adjoints with the same

“shape” as the primal variable, i.e., if b ∈ R𝑚 then 𝛿b ∈ R𝑚 .

Solving for the Kernel Polynomial. Since the Hankel matrix H of

the biased moment vector is positive-definite and symmetric,

Hc = 𝜼 (22)

(c.f. Eq. 16) can be solved stable by performing the Cholesky decom-

position of H, followed by forward and backward substitution.

The output of this operation is the vector c, so, in reverse-mode

differentiation, the adjoint operation uses the input 𝛿c to compute

𝛿H and 𝛿𝜼. For a linear system Ax = b with invertible A, one can

derive the equalities defining the adjoints [Strang 2007, Section 8.7]

𝛿b = A−⊤𝛿x

𝛿A = −𝛿b x⊤,
(23)

which lead to explicit expressions for the outputs

𝛿𝜼 = H−1𝛿c

𝛿H = −𝛿𝜼c⊤,
(24)

since H is symmetric. Therefore, 𝛿𝜼 is obtained by solving another

linear system involving the Hankel matrix, with the same Cholesky

decomposition, and the adjoint 𝛿H is simply an outer product.

Finding the Kernel Roots. By the structure of the problem, and

critical for our proofs in Section 4, we know that one of the roots

{𝑥𝑖 }𝑛
1
of the kernel polynomial is unbounded when the query point

𝜂 approaches a singularity, as its leading coefficient 𝑐𝑛 vanishes.

Therefore, besides efficiency, numerical stability and adequate pre-

cision in 32-bit arithmetic are desired properties.

The cases 𝑛 = 1 (3 moments) and 𝑛 = 2 (5 moments) lead to

kernel polynomials of degree 𝑑 = 1 and 𝑑 = 2, respectively, whose

roots can be found using closed-form expressions. For the quadratic

equation, we have implemented a robust solver following Kahan

[2004]. Although closed-form expressions exist for degrees 3 and

4, we opt for a fast and more accurate Newton-style approach for

degrees> 2 [Yuksel 2022]. Notably, vanishing 𝑐𝑛 is naturally handled

in our implementation by returning one root with value inf instead
of branching to a different version of the algorithm or trying to

explicitly avoid this case by comparing 𝜂 to the singularity points

(the roots of 𝑃𝑛 , Section 4.1.1). All subsequent operations gracefully

handle roots at infinity by returning the limit value.

If {𝑥𝑖 }𝑛𝑖=1
are the roots of the kernel polynomial 𝐾 (c, 𝑥) with

coefficients c, the adjoint operation computes 𝛿c, given {𝛿𝑥𝑖 }:

𝛿c =

𝑛∑︁
𝑖=1

𝜕𝑥𝑖

𝜕c
𝛿𝑥𝑖 . (25)

The implicit function theorem relates the roots to the coefficients

𝜕𝑥𝑖

𝜕c
= −

(
1 𝑥𝑖 . . . 𝑥𝑛

𝑖

)⊤
𝜕𝐾
𝜕𝑥 (c, 𝑥𝑖)

(26)

This expression is undefined for a root at infinity but our proofs in

Section C.7 show that the product

𝜕𝑥𝑖

𝜕c
𝜕𝑤𝑖

𝜕𝑥𝑖
𝛿𝑤𝑖︸ ︷︷ ︸

≔𝛿𝑥𝑖

(27)

goes to zero when approaching singularities. Since the result be-

comes less reliable with large 𝑥𝑖 , we test if the quadratic factor in

the denominator of the derivatives
𝜕𝑤𝑖

𝜕𝜂 (Eq. (55)) and
𝜕𝑤𝑖

𝜕m (Eq. (60))

overflows and if so, set the contribution of 𝑥𝑖 to 𝛿c to zero.

Solving the Vandermonde System. Instead of solving the Vander-

monde system with a generic approach, we use the iterative algo-

rithm by Björck and Pereyra [1970] as we found it to be efficient,

stable, and simple to implement. The algorithm is derived from

interpolation with divided differences, which is also the suggested

method by Münstermann et al. [2018]. Additionally, we observe that

it gracefully handles inputs close to or exactly at infinity: if a point

𝑥𝑖 is at infinity with value inf, the associated solution𝑤𝑖 becomes

zero. This corresponds exactly to the expected limit behavior (Sec-

tion 4.3). The stability of the algorithm generally depends on the

order of the inputs {𝜂, 𝑥1, . . . , 𝑥𝑛} [Higham 1987]. We found that

ordering the roots ascending by absolute value drastically improves

the precision (this is effectively pivoting), and only then the limit

value is obtained.

The inputs to the algorithm are the roots 𝑥0 (= 𝜂), 𝑥1, . . . , 𝑥𝑛 and

the first 𝑛 + 1 entries of the moment vector m, which we denote

by m̄ = (𝑚0, ...,𝑚𝑛)⊤. The adjoint of the partial moment vector is

obtained by re-using the equalities for the linear system (Eq. (23)):

𝛿m̄ = V−⊤𝛿w, (28)

where w = (𝑤0,𝑤1, . . . ,𝑤𝑛)⊤ is the vector of weights and its adjoint

𝛿w is an input. We obtain 𝛿m̄ with an algorithm for solving the dual

Vandermonde system by Björck and Pereyra [1970]. Intuitively, the

solution is a polynomial interpolating the values {𝛿𝑤𝑖 } at points
{𝑥𝑖 }. If a root 𝑥𝑖 is at infinity, its value 𝛿𝑤𝑖 does not contribute to
the interpolation (this can be seen by expressing the derivative in

Eq. (57) with the Vandermonde matrix), so the resulting polynomial

has one less degree, i.e., 𝛿m̄𝑛 = 0. This is exactly the output of the

algorithm for an 𝑥𝑖 at infinity.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

8 • Worchel and Alexa

The same equalities provide an expression for the adjoint matrix

𝛿V = −𝛿m̄w⊤, (29)

which leads to the root adjoints

𝛿𝑥𝑖 =

𝑛∑︁
𝑗=0

𝑛∑︁
𝑘=0

𝛿V𝑗,𝑘

[
𝜕V
𝜕𝑥𝑖

]
𝑗,𝑘

= − 𝜕

𝜕𝑥𝑖

(𝑛∑︁
𝑗=0

𝛿m̄𝑗𝑤𝑖𝑥
𝑗
𝑖

)
, (30)

This is simply the derivative of a polynomial with coefficients 𝛿m̄𝑤𝑖
evaluated at 𝑥𝑖 . For 𝑥𝑖 at infinity, it may be undefined in floating

point arithmetic and this case is explicitly handled in the adjoint

root finding (see discussion around Eq. (27)).

Remaining Operations. The moment biasing, Hankel matrix con-

struction, and weight summation require no special considerations.

5.2 Fused Implementation

Implementing the AD version or the explicit algorithms (Section 5.1)

in a framework like PyTorch can be disappointing performance-

wise: each operation invokes a dedicated kernel, with the launch

overhead quickly accumulating for complex computation graphs,

and more importantly, all intermediate results are materialized in

memory, which not only leads to excessive storage requirements

but also results in expensive reads from (GPU) memory. Just-in-time

(JIT) compilation can mitigate these issues but comes at the cost of

losing control over the generated kernels and might not lead to the

expected improvements: for example, we have JIT-compiled the AD

implementation (Section 5, Automatic Differentiation) using PyTorch

2.x’s compile feature, measuring either negligible improvements

(𝑛 = 1, 2) or even worse runtime (𝑛 > 2), because some operations

are currently unsupported (e.g. finding eigenvalues of a matrix).

Instead, we have implemented the primal and adjoint algorithms

from Section 5.1 entirely in C++, only depending on a small subset

of the standard library. The floating point type and 𝑛 are known at

compile time, leading to the generation of highly optimized code.

We instantiate and test variants for 32-bit float and 64-bit double,
and 𝑛 = 1, . . . , 5. GPUs are targeted using CUDA, such that all

operations of the primal algorithm are compiled into a single CUDA

kernel, and similarly, a single kernel is compiled for the adjoint

algorithm. Global memory accesses are often the bottleneck of a

GPU implementation, so we ensure that intermediate values can

reside in registers. Specifically, we avoid register spilling to (local)

memory by only statically indexing into arrays, for example during

the root finding procedure [Peters 2023].

The C++/CUDA implementation is exposed to Python using

nanobind [Jakob 2022], so it can readily interface with array pro-

gramming frameworks like PyTorch, numpy, or JAX.

Accuracy Verification. We first verify the accuracy of the C++ im-

plementation by comparing it to the PyTorch (AD) implementation

for 1million random samples. The average accuracy in the computed

roots and weights is comparable (Table 1, Appendix A). The gradi-

ents of the bound computed by the adjoint procedure are verified

by comparing them to finite differences. The C++ implementation

produces errors almost equal to the PyTorch AD implementation,

differing in the 3rd to 4th digit (Table 1). We exclude samples with

𝜂 near a singularity, so this merely serves as a sanity check and the

limit behavior is studied separately (Paragraph Stability Analysis)

Performance. We compare the runtime and memory consumption

of the C++/CUDA implementation to the PyTorch-based AD imple-

mentation, on the GPU, using 2 million randomly sampled moments

{m𝑖 } and points {𝜂𝑖 } for varying 𝑛 (Figure 4). Across all tests, the

custom CUDA implementation is considerably faster, both for the

primal (forward) and adjoint (backward) computations as well as in

32-bit and in 64-bit precision. The over 1000× increase in runtime

(𝑛 = 3, 32 bits) is related to root finding using the companion matrix

for 𝑛 > 2, because PyTorch seemingly does not solve for eigenvalues

on the GPU (the CPU runtime is similar). Surprisingly, the corre-

sponding function is also faster for 64-bit input, which explains why

the 64-bit primal algorithm for 𝑛 > 2 is faster than the 32-bit variant.

We have no conclusive explanation but this behavior is consistent

across different machines, operating systems, and PyTorch versions.

Regardless, the variants 𝑛 = 1 and 𝑛 = 2 use closed-form expres-

sions for the roots, so they are unaffected by this anomaly. In 32-bit,

the CUDA implementation is up to three orders of magnitude faster,

and in 64-bit up to two orders. The default variant of the CUDA im-

plementation recomputes all intermediate values from the forward

pass in the backward pass, which makes it at least as expensive as

the primal algorithm. Still, the runtime is much lower than the AD

graph traversal. The observed performance benefit in an application

will certainly be lower because a differentiable rendering pipeline

consists of various costly operations and the GPU might not be

saturated by the number of computed bounds. If the algorithm is

used for shadow mapping, 2 million bounds correspond roughly to

rendering a 1k image with two light sources. Even for 50× larger

input (∼ 100 Million bounds), for 𝑛 ≤ 2, the 32-bit primal algorithm

runs in less than 5 milliseconds and the adjoint algorithm in under

20 milliseconds (Figure 5, left column). The double-precision run-

time is significantly worse and roughly aligns with the theoretical

performance of the tested GPU (64× higher FP32 throughput).

The memory footprint of the CUDA implementation is very pre-

dictable as storage from global memory is only allocated for the

output. If 𝑁 is the number of bounds to compute, the primal algo-

rithm generates an array of size 𝑁 and the adjoint algorithm an

array of size 𝑁 (2𝑛 + 2) (for 2𝑛 + 1 moment adjoints and the adjoint

of 𝜂), therefore the memory requirements are linear (Figure 5, right

column, mind the log-scaled x-axes). Specifically, in contrast to the

PyTorch AD implementation, no computation graph is constructed

during the primal algorithm, which leads to a significantly smaller

memory footprint (Figure 4). For the adjoint computation, the AD

implementation also only allocates memory for the outputs.

Retaining Roots. The default C++/CUDA implementation outputs

only the bounds from the primal kernel. In the adjoint kernel, the

required quantities (e.g., the Cholesky factorization and the roots)

are recomputed by re-running the primal algorithm. For 𝑛 > 2, root

finding is an iterative procedure (Section 5.1), which can become

the dominating operation during the adjoint phase, in terms of run-

time. We have therefore implemented a “retained roots” variant that

returns the roots from the primal computation and re-uses them

during the adjoint computation. The variant has a similar computa-

tion time for the primal part and an increased memory complexity,

which is still significantly less than AD, but a considerably lower

runtime for the adjoint part for 𝑛 > 2 (Figures 4 and 5).

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Moment Bounds are Differentiable • 9

Pr
ec

is
io

n
=

32
 b

it
s

0

1

2

3

Ti
m

e
(M

ill
is

ec
on

ds
)

0.1 0.1

0.8

2.0
3.9

0.1 0.2

0.8

2.0
3.226.3 36.1 1551 2385 3613

Forward

0.3 0.4

1.6

3.2 4.3

0.4 0.5 0.7 0.8 0.9

32.5 45.2 94.9 217 195

Backward

0

25

50

75

M
em

or
y

(M
iB

)

7.6 7.6 7.6 7.6 7.6
22.9

31.0
38.1

45.8
53.4

259 480 786 1139 1553

30.5
45.8

61.6
76.3

91.6

30.5
45.8

61.6
76.3

91.6

38.9
45.8

61.0

77.0
92.4

Pr
ec

is
io

n
=

64
 b

it
s

1 2 3 4 5
0

50

100

150

Ti
m

e
(M

ill
is

ec
on

ds
)

0.7 1.6

47.2

110
192

1.3 1.5

47.1

110
192

44.5
61.7

1032 1702 2738C++/CUDA
C++/CUDA (Retained Roots)
PyTorch

1 2 3 4 5

2.1 4.4

51.3

116
200

2.1 4.2 6.2 8.9 12.3

66.6

117

150 248 351

n=1 2 3 4 5
0

50

100

150

M
em

or
y

(M
iB

)

15.3 15.3 15.3 15.9 15.3
45.8

61.0
76.3

91.6
107

492 929 1534 2230 3051

n=1 2 3 4 5

61.0
91.6

123
153

183

61.0
91.6

122
153

183

61.0
91.6

122
153

183

Fig. 4. Runtime and memory requirements of forward and backward implementations of moment-based bounds. The benchmark uses 2 million randomly

sampled points (𝜂,m) . All measurements were performed on a workstation with an Intel i7-13700 CPU and an NVIDIA RTX 3090 GPU (24 GB VRAM). The

PyTorch implementation is based on automatic differentiation applied to Algorithm 1 (Section 5, Paragraph Automatic Differentiation), while the C++/CUDA
implementation follows Section 5.1. The Retained Roots mode stores the roots of the kernel polynomial between the forward and backward pass.

0

5

10

n = 1

Time (Milliseconds)

0

1
Memory (GiB)

0

10

n = 2

0

1

2

0

25

50

n = 3

0

2

106 107 108

Number of Computed Bounds

0

50

100

n = 4

106 107 108

Number of Computed Bounds

0

2

Forward
Backward
Forward (Ret. Roots)
Backward (Ret. Roots)

Fig. 5. Runtime and memory requirements of the 32-bit C++/CUDA imple-

mentation with increasing number of computed bounds. The rows corre-

spond to orders 𝑛 = 1, 2, 3, 4, from top to bottom. Mind the log-scaled x-axis.

Stability Analysis. The bounding functions are undefined at a

finite set of points, where 𝜂 takes the value of one of the roots of

the polynomial 𝑃𝑛 (and this is not a pathological case, as shown in

0
100

101

102

103

104

105

106

N
um

be
r

of
 N

aN
s

Bound Bound/ Bound/ m

5 0 5
0.00

0.05

0.10

0.15

0.20

0.25

D
iff

er
en

ce
 t

o
V

al
ue

at
 S

in
gu

la
ri

ty
 (M

ax
)

0.0004

C++/CUDA
PyTorch (AD)

5 0 5
Singularity (1e-06)

5 0 5

Fig. 6. Evaluating the bound near singularities can be numerically unstable,

leading to undefined output in the forward and backward computation

(top). The implementation of an algorithm that considers the properties of

the bound at singularities (“C++/CUDA”, Section 5.1) is more robust than

the naive implementation based on automatic differentiation (AD).

Section 6.1.3). As 𝜂 approaches a singular point, one root 𝑥𝑖 tends

to infinity, which can compromise the accuracy of the bound and

its derivatives, specifically in 32-bit precision.

We use the following procedure to study the implementations

near the singularities: for moments m, we generate points 𝜂𝑘 in-

side an 𝜖-neighborhood (𝜖 = 8e-6) around each singularity 𝑦 𝑗 (𝑗 =

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

10 • Worchel and Alexa

1, . . . , 𝑛), and compute the bound and its derivatives. We also evalu-

ate the bound and the derivatives exactly at the singular point (up to

floating-point precision). At each 𝜂𝑘 , two traits are desirable : (1) the

bound and the derivatives remain finite since undefined values can

severely compromise a gradient-based optimization, and (2) their

values tend towards the value at the singularity.

For 𝑛 = 1, . . . , 5 we randomly generate moments, then compute

the number of NaNs and the (absolute) difference to the value at

the singularity (Figure 6). Results are for 32-bit precision and the

difference is reported as the maximum across all 𝑛 and moment

vectors. The PyTorch (AD) implementation generates almost no

usable values near a singularity, which, to a large part, is due to

failures in its root-finding procedure. The C++ implementation

generates no NaN output since its operations are carefully designed

around the limit case (Section 5.1). This is also reflected by the values

tending to the value at the singularity (Figure 6, second row).

0

Bound/

5 0 5
Singularity (1e-06)

0

Bound/ m

We found the higher-order powers in

the computation of 𝛿𝑥𝑖 (Eq. (30)) and the

product in Eq. (27) particularly troublesome:

without the measurements for 𝑛 = 5, the

derivatives tend even more clearly to the

singularity value (inset). Unexpectedly, the

64-bit precision variant behaves less robust

near singularities, which is likely due to the

reliance on overflow semantics. We consider the 64-bit implementa-

tion experimental and leave a deeper investigation to future work.

6 APPLICATIONS

6.1 Differentiable Shadow Mapping

In rendering, shadows from point lights (including those at infin-

ity) are often approximated with shadow mapping [Williams 1978].

Traditionally, the shadow map is a depth image rendered from the

perspective of the light, and a point in the scene is in shadow if its dis-

tance to the light is larger than the corresponding depth value in the

shadowmap. However, the derivative of this binary test is not useful

as it is zero for the point’s distance and the depth value. Worchel and

Alexa [2023] show that pre-filtered shadow mapping [Annen et al.

2007, 2008; Donnelly and Lauritzen 2006; Peters and Klein 2015] is a

suitable framework: the binary visibility test is replaced with a soft

test that induces image derivatives at shadow boundaries.

In moment-based techniques, one first obtains a set of moment

maps by filtering the shadow map 𝑓 with a compact kernel:

𝑓𝑘 (u) =𝑚𝑘 (u) =
∫
I
𝑓 (p)𝑘𝑔(p − u) dp, 0 ≤ 𝑘 ≤ 2𝑛, (31)

where the kernel fulfills

∫
𝑔(p) = 1, so𝑚0 = 1. If 𝑑x is the distance

of a point x to the light and ux is its pixel position in the shadow

map, the shadow test is 𝐿
(
𝑑x,m(ux)

)
, which is a lower bound to the

result obtained with percentage-closer filtering [Reeves et al. 1987].

Worchel and Alexa [2023] show that the visibility test of Variance

Shadow Mapping (VSM) [Donnelly and Lauritzen 2006], based on

two power moments (1,𝑚1,𝑚2), is differentiable. Our proof shows
that 𝐿 is differentiable for arbitrary number of moments, motivating

more general techniques like Moment Shadow Mapping (MSM) [Pe-

ters and Klein 2015] with four power moments (1,𝑚1,𝑚2,𝑚3,𝑚4).

We have implemented

a rasterization-based dif-

ferentiable renderer with

shadow mapping (inset):

the geometry is first ras-

terized, producing the G-

buffer, a collection of at-

tribute images needed for

shading (e.g. diffuse albedo and normals). Shadow maps are ren-

dered and used to compute the surface visibility. All data is then

combined to the final image. Gradients flow along the shown edges.

6.1.1 Light Leaking in Appearance Estimation. Variance Shadow

Mapping suffers from light leaking: if the depth has high variance in

the filter support, the computed bound is not sharp and visibility is

overestimated. The adverse effect of light leaking is more significant

in inverse settings: in forward rendering, subtle artifacts might stay

unnoticed by human observers, but with differentiable rendering,

images are often compared to a reference that potentially originates

from the physical world. Moment ShadowMapping strongly reduces

light leaking by providing a sharper bound to the visibility (Figure 1).

Faithful estimation of visibility is critical when the appearance

of an object and the illumination are decomposed, e.g. as a post-

processing step of a (neural) 3D reconstruction pipeline. Jointly

optimizing the light direction and albedo texture from a single refer-

ence image yields significantly more accurate results with Moment

ShadowMapping (Figure 7): while VSM and MSM obtain the correct

light direction, the VSM albedo texture shows traces of the shadow

because it must account for areas with reduced shadow intensity.

Our MSM implementation not only generates higher quality tex-

tures but is as fast as the VSM implementation byWorchel and Alexa

[2023] (Figure 8). The C++/CUDA implementation (Section 5.2) is

critical to matching the performance: a PyTorch (AD) implementa-

tion of MSM is observed to have twice the VSM runtime, and, more

importantly, does not converge due to NaN outputs (Section 6.1.3).

6.1.2 Comparison to Ray Traced Shadows. Instead of approximat-

ing visibility, it can be accurately determined using ray tracing,

and, more generally, realistic images can be synthesized with sys-

tems for physically-based, differentiable rendering. The impact

Geometry (Opt.)

on runtime is significant: an approximate, dif-

ferentiable renderer with Moment Shadow

Mapping finishes an image-based reconstruc-

tion task in seconds while the physically-

based system Mitsuba 3 [Jakob et al. 2022b]

requires minutes (Figure 9). Importantly, the

visibility gradients generated byMSM lead to

a successful reconstruction: if the visibility

is detached from the AD graph, the recon-

struction fails (inset). With significant con-

tribution from indirect illumination, approxi-

mating only shadows would not be sufficient,

and additional techniques are required.

6.1.3 Numerical Considerations. The PyTorch AD implementation,

in contrast to the C++/CUDA implementation, generates undefined

outputs and gradients if the query point is close to a singularity

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Moment Bounds are Differentiable • 11

Image (Reference) Image (Initial)

V
SM

Image (Opt.) Albedo (Opt.) Albedo Error

Albedo (Reference)

M
SM

V
SM

M
SM

Fig. 7. Optimizing the light position and spatially-varying albedo of an object from a single reference image. Both, Variance Shadow Mapping (VSM) and

Moment Shadow Mapping (MSM) are based on the theory of moments, but Moment Shadow Mapping uses more moments, which leads to a more accurate

estimation of visibility. This is crucial if the appearance of an object is reconstructed because otherwise, remains of the shadow are baked into the albedo (see

albedo optimized with VSM). The target reference image is generated using percentage-closer filtering [Reeves et al. 1987].

VSM MSM VSM MSM
0.0

2.5

5.0

7.5

10.0

Ti
m

e/
It

er
. (

M
ill

is
ec

on
ds

)

4.86

8.94

4.99

9.04

0

200

400

M
em

or
y

(M
iB

)

290
358

Shadow Pass
G-Buffer Pass
Visibility Test
Backward
Misc
Peak Memory

Fig. 8. Runtime of Variance Shadow Mapping (VSM) and Moment Shadow

Mapping (MSM) for the appearance estimation task. Both methods are

similarly efficient, but MSM requires slightly more memory. “Misc” includes

the remaining operations, such as anti-aliasing and evaluating the objective.

(Section 5.2, Paragraph Stability Analysis). In forward rendering, this

merely leads to visual artifacts, but in inverse rendering, this can

corrupt a (potentially long-running) optimization. Figure 10 shows

that this is not a pathological case: almost all surfaces directly visible

to a light will result in queries close to singularities. The reason is

that the moments are generated by filtering over a compact region

in the shadow map (Eq. (31)). Except at discontinuities, the depth

values in the filter support will be correlated and only subtend a

small section of the moment curve with concentrated singularities.

The depth values of directly visible points will be close to the depths

in the filter support, so fall within that same segment of the moment

curve and near the singularities. For this reason, we were unable to

achieve a stable convergence using the PyTorch AD implementation.

Moment Biasing. A central feature of Moment Shadow Mapping

is the ability to exactly reconstruct the visibility if the filter support

region contains no more than two surfaces (perpendicular to the

light direction) [Peters and Klein 2015]. For such cases, the moments

are slightly biased to ensure that the Hankel matrix is non-singular.

We use the bias vectors by Münstermann et al. [2018] and test the

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

12 • Worchel and Alexa

Geometry (Initial)

M
SM

(S
ha

do
w

 M
ap

pi
ng

)

Geometry (Opt.)

Time (mm:ss) = 00:00 00:01 00:04 00:07 00:11 00:15

Geometry (Ref.)

Iteration = 25

Pr
oj

. S
am

pl
in

g
(R

ay
 T

ra
ci

ng
)

00:13

75

00:35

200

01:32

400

03:05

600

04:38

800

06:11

Fig. 9. 3D mesh reconstruction from a single image of an object illuminated by three spotlights. The differentiable, moment-based shadow mapping technique

(MSM) convergences significantly faster than the ray tracing approach based on projective sampling [Zhang et al. 2023], with similar reconstruction results.

The reference image is rendered using ray tracing and serves as a reference for both methods. The reference image does not include indirect illumination. The

optimization uses gradient preconditioning [Nicolet et al. 2021] and a rotation-equivariant instance of ADAM [Kingma and Ba 2015; Ling et al. 2022].

11e-07

Distance to Nearest SingularityImage

Fig. 10. Moment shadow mapping uses bounding functions that are unde-

fined at certain points, close to which evaluating the bound and its deriva-

tives becomes numerically challenging. Even in a simple scene, query points

are close to these singularities, which leads to undefined output in naive

implementations (“PyTorch”), motivating more robust approaches (“C++”).

recommended bias for 𝑛 = 2 (𝛼 = 5 · 10
−7
), but singular matrices

are still occasionally encountered. We use a slightly higher bias (as

a rule of thumb, at least twice the recommended value).

Geometry (Opt.)

n = 3

Some experiments run successfully

with the bias recommended byMünster-

mann et al. [2018, Table 1, Supplemen-

tary Material] (e.g. Section 6.1.1), so it is

worth testing different values to strike

the right balance between accuracy and

robustness in an application. With sta-

ble biasing, the number of moments can

be increased from 4 (𝑛 = 2) to 6 (𝑛 = 3)

and further, still resulting in successful 3D reconstructions (inset).

6.1.4 Quality of Rasterization Derivatives. The quality of the ap-

proximated visibility decreases with the shadow map resolution.

Low-resolution shadow maps also harm the inverse setting (Fig-

ure 11). First, they cannot reproduce fine structures in the target

shadow, and second, they are limited by the differentiable raster-

izer: the implementation is based on nvdiffrast [Laine et al. 2020],

Image (Ref.)

Light

Geometry (Initial) Geometry (Opt.)

642 1282

Geometry (Ref.)

2562 5122

Fig. 11. An optimization with shadow mapping can fail if the underlying

differentiable renderer misses the relation between changes in geometry to

changes in the shadow map (here at caused by low shadow map resolution).

which differentiates discontinuous coverage by anti-aliasing silhou-

ettes. If pixels are larger than (projected) triangles, the silhouette

detection can fail and coverage is not differentiated (Figure 12). As

a result, shadow boundaries carry no gradients w.r.t. the geometry.

Worchel and Alexa [2023] also observe this behavior, although

they do not show the adverse effect in a reconstruction task, and

the experiments suggest that increasing the filter kernel size can

mitigate the issue, which is, however, not the case for low-resolution

shadowmaps. This is not a conceptual issue of differentiable shadow

mapping and it can likely be mitigated by using other approaches for

differentiable rasterization [Liu et al. 2019; Pidhorskyi et al. 2025].

6.2 Differentiable Visibility for Volume Rendering

Volume rendering [Kajiya and Von Herzen 1984] is commonly used

in computer vision for volumetric scene representations, such as

(neural) radiance fields [Mildenhall et al. 2020]. If r(𝑡) = o + 𝑡d is a

camera ray, the image formation model assigns to it a color∫ ∞

0

c
(
r(𝑡)

)
𝑇 (𝑡) 𝜎

(
r(𝑡)

)
d𝑡, (32)

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Moment Bounds are Differentiable • 13
Sh

ad
ow

 M
ap

 (m
1)

Resolution = 322

D
er

iv
at

iv
e

(
xm

1)

642 1282 2562

-0.5

0.0

0.5

Fig. 12. Differentiable shadow mapping can fail at capturing the changes

of the shadow map with respect to movement of the geometry, depending

on the underlying differentiable renderer. In this specific case, the renderer

relies on silhouette detection, which fails for low-resolution shadow maps.

where c is a color field, 𝜎 is a density field and𝑇 is the transmittance.

Intuitively, the density 𝜎 measures the probability (per unit length)

of absorbing or scattering a photon from its path and transmittance

𝑇 (𝑡) = exp

(
−
∫ 𝑡

0

𝜎
(
r(𝑧)

)
d𝑧

)
(33)

is the fraction of radiance being transported from 0 to 𝑡 .

When volume rendering is combined with a physically-based

image formation model, e.g. to decompose appearance and illumi-

nation or use shadows as additional reconstruction cues, one must

compute the transmittance from a light source to each point on

a primary ray. Numerically estimating the transmittance can lead

to quadratic complexity, which, even for small images, quickly be-

comes infeasible, especially when storing a computation graph for

reverse-mode differentiation. Several ways of approximating the

transmittance have been proposed, one of which is applying shadow

mapping by rendering and storing the expected termination depth

from the perspective of a light, for each shadow map pixel u,

𝑓 (u) =
∫ ∞

0

𝑡 𝑇 (𝑡) 𝜎
(
r(𝑡)

)
d𝑡, (34)

and using soft, ad-hoc extensions of the binary shadow test to make

it differentiable [Liang et al. 2022; Tiwary et al. 2022]. While the

approximation is efficient and induces dense gradients in a volume,

it is difficult to achieve shadows with reasonable intensity (Sec-

tion 6.2.1) and the approach is not volume-based, i.e., it does not

properly handle empty space, which is desirable when combining

multiple volumes or different scene representations (Section 6.2.2).

Transmittance Mapping. Inspired by classical

work in real-time graphics [Delalandre et al.

2011; Jansen and Bavoil 2010; Lokovic and

Veach 2000; Peters et al. 2016] we propose a

principled approach to transmittance approxi-

mation for differentiable volume rendering. Sim-

ilar to how a shadow map stores the minimum

depth along a ray emanating from the light

source, a transmittance map stores a compact

representation of the transmittance function along a ray (inset).

Following Münstermann et al. [2018], we define absorbance as

𝐴(𝑡) = − ln

(
𝑇 (𝑡)

)
=

∫ 𝑡

0

𝜎
(
r(𝑧)

)
d𝑧. (35)

𝐴 is non-decreasing and non-negative as long as 𝜎 , the volume den-

sity, is non-negative. This allows approximating 𝐴 using moments

(Section 3): a transmittance map is built by computing the moments

𝑓𝑘 (u) =𝑚𝑘 =

∫ ∞

0

𝑧𝑘𝜎
(
r(𝑧)

)
d𝑧, 0 ≤ 𝑘 ≤ 2𝑛. (36)

The representation is compact because it only stores 2𝑛 + 1 values

in each pixel (“TM-n” will refer to order-2n transmittance mapping,

i.e., a transmittance map with moments𝑚0, . . . ,𝑚2𝑛). The bounding

functions from Equation (4) then approximate the transmittance:

𝑇 (𝑡) ≈ exp

(
−
(
1 − 𝛽)𝐿(𝑡) − 𝛽𝑈 (𝑡)

))
, (37)

where 𝛽 ∈ [0, 1] blends between the bounds [Münstermann et al.

2018]. The approximation quality increases with the order 𝑛 and

transmittancemaps are filterable, i.e., the approximation still “works”

as expected when they are filtered or sampled fromwith (bilinear) in-

terpolation. Using the alternative form from Appendix B, following

Peters et al. [2016], transmittance maps can also be easily integrated

into existing volume rendering frameworks, e.g. by Li et al. [2023].

Implicit Surfaces and Volumes. Differentiable vis-

ibility in volumes might be of particular interest to

the 3D reconstruction community because the prop-

erties of volume rendering, namely trivial differen-

tiability and dense gradients, are often exploited for

reconstruction using implicit surfaces [Oechsle et al.

2021; Wang et al. 2021; Yariv et al. 2021]: construc-

tions like NeuS [Wang et al. 2021] use differentiable

volume rendering for an indicator or signed distance

function 𝑔(x) transformed into a volume density
3

𝜎
(
r(𝑡)

)
= 𝜙𝑠

(
𝑔
(
r(𝑡)

))
. (38)

The parameter 𝑠 controls the spread of the bell-shaped function 𝜙𝑠
and therefore the opacity of the induced density field (inset). We

use this construction throughout the section, so the shown volumes

are induced by some signed distance function.

6.2.1 Visibility Gradients for the Density. We first verify, using

simple, analytic shapes, that the gradients computed from the trans-

mittance approximation affect the density field and the underlying

implicit surface. Figure 13 shows that a perturbation of geometry is

reflected in the derivatives, both for directly visible surface points

and the cast shadow computed using transmittance mapping.

The quality of the approximation and its gradients is compared

to shadow mapping using a simple task: recover the pose of an

object, i.e., the position and orientation, from only a single image.

Shadows can be important cues for this task [Liu et al. 2023; Shafer

and Kanade 1983] and it might be approached by volume rendering

implicit surfaces [Qu et al. 2023]. The image formation model simply

accumulates the visibility 𝑉 along the primary rays∫ ∞

0

𝑉
(
r(𝑡)

)
𝑇 (𝑡) 𝜎

(
r(𝑡)

)
d𝑡, (39)

3
A direction-dependent normalization factor is omitted for brevity.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

14 • Worchel and Alexa
Sc

en
e

G
eo

m
et

ry
 (N

or
m

al
s)

TM-1

V
is

ib
ili

ty
 V

TM-1

D
er

iv
at

iv
e

xV TM-5

TM-5

TM-1

TM-1

TM-5

TM-5

Fig. 13. The quality of the approximation of transmittance increases with

the number of moments. TM-𝑛 denotes an order 𝑛 with 2𝑛 + 1 moments.

The approximation is differentiable and perturbation of the geometry with

a parameter 𝑥 is correctly reflected in the derivative

Reference

Li
nk

Initial Tiwary et al. VSM TM-1 TM-4

Reference

To
ru

s

Initial Tiwary et al. VSM TM-1 TM-4

Reference

To
ru

s
(C

ap
)

Initial Tiwary et al. VSM TM-1 TM-4

Fig. 14. Optimizing the pose of simple, analytic shapes with differentiable

volume rendering. The approximation of shadow mapping ([Tiwary et al.

2022] and VSM) is not accurate and often fails to find the pose, while the

more principled moment-based (TM-𝑛) approach succeeds. The reference is

rendered at a slightly higher density (𝑠 = 5) than used in the optimization

(𝑠 = 4) to mimic a more “realistic” reference.

where 𝑉 is the (approximate) transmittance from the light source

to the point r(𝑡). Even in this simple setting, differentiating shadow

rays is already infeasible due to the excessive memory requirements.

We compare against the shadow mapping variants by Tiwary

et al. [2022], which has a sigmoid-based soft visibility test, and Vari-

ance Shadow Mapping (VSM) by Donnelly and Lauritzen [2006]
4
.

Figure 14 shows that the shadow mapping visibility is far from the

shadow ray reference, leading to inaccuracy in the estimated pose.

We measure the translation error Δt, the Hausdorff distance 𝐷H,

both scaled by factor 10, and the runtime per iteration 𝑡 , as the me-

dian over multiple runs, averaged over different shapes (inset table).

4
While VSM has only been proposed for differentiable rasterization [Worchel and Alexa

2023], it is included because it has a more principled visibility test.

↓ Δt ↓ 𝐷H ↓ t [s]
Tiwary et al. 0.50 0.33 0.58
VSM 0.94 0.67 0.58
TM-1 0.09 0.08 0.59

TM-2 0.07 0.08 0.59

TM-3 0.08 0.09 0.60

TM-4 0.08 0.09 0.61

TM-5 0.07 0.08 0.63

Transmittance maps consistently out-

perform shadow mapping in the geo-

metric error measures. The difference

between the transmittance map or-

ders is marginal but could become

noticeable for multiple (articulated)

objects. Most importantly, transmit-

tance mapping is more accurate and

at the same time equally efficient.

6.2.2 Visibility Through Empty Space. The issue arising from shadow

mapping not being a principled method for approximating transmit-

tance is best shown by testing a trivial property of transmittance: if

the density in a volume is zero, the transmittance is one, because no

light is absorbed. The test setting is inspired by shadow art [Mitra

and Pauly 2009]: planes (triangle meshes) are placed around a grid

representing an SDF. The SDF and the density-controlling variable

𝑠 are optimized to cast given target shadows on the planes, by using

an objective function that compares renderings of the cast shadows

to the targets. The topological flexibility of the SDF is beneficial for

this task and volume rendering ensures dense gradients. To main-

tain a valid SDF, the function is redistanced by solving the Eikonal

equation in each iteration [Detrixhe et al. 2013; Vicini et al. 2022].

Shadow rays do not have quadratic complexity in this setting

because the receiver is rasterized, not volume-rendered, so they can

serve as a reference. While transmittance maps generate results

close to the shadow ray solution, shadow mapping fails (Figure 15):

since the receiver planes are not volumes, they are not considered

in volume rendering, so, whenever a light ray misses the implicit

surface, the expected terminated depth will be zero (compare Eq. 34).

Shadow mapping behaves as if an object directly in front of the light

source obstructs the view. Therefore, the unobstructed parts of the

receiver plane will appear in shadow, and the obstructed parts will,

too. Since the shadow intensity in the method by Tiwary et al. [2022]

depends on the distance between the occluder and receiver some

areas in shadow appear grayish. The optimization behaves contrary

to the expectation and recreates the bright parts of the target image

using the volume (the sphere emerges) while the shadow is recreated

by generating free space. Transmittance maps handle free space

correctly by reporting constant 1 transmittance, while being about

4× faster than shadow rays – as fast as shadow mapping.

6.2.3 3D Reconstruction from Low-Density Volumes. Shadow map-

ping does not necessarily fail and has been successfully used in

differentiable volume rendering: if 𝑠 is high, the volume density

spikes at the surface, and volume rendering collapses to surface

rendering. Since 𝑠 (c.f. Eq. 38) is often optimized with the volume,

from low to high [Li et al. 2023; Wang et al. 2021], the point at which

shadow mapping becomes a good approximation depends on the

optimization schedule. This leads to an intricate balance: starting

with a very low 𝑠 induces dense gradients, which more robustly

localize the surface, independent of the initial state. However, the

inaccurate visibility approximation at earlier iterations increases

the risk of becoming stuck in suboptimal local minima.

This effect is observable in 3D reconstruction from multi-view

images (Figure 16). Shadow mapping (VSM) navigates into an unre-

coverable state by decreasing the target density until the volume

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Moment Bounds are Differentiable • 15
bu

nn
y-

2
sp

ot
-3

Shadow Rays

te
ap

ot
-t

ri
an

gl
e

Tiwary et al. VSM TM-1 TM-4 TM-5

Fig. 15. Performing shadow art by using differentiable volume rendering. The shadow receiver planes are triangle meshes and a signed distance function,

defined on a grid, is optimized such that its cast shadows resemble target shadows on the planes. Methods based on shadow mapping (by Tiwary et al. [2022]

and Variance Shadow Mapping (VSM) [Donnelly and Lauritzen 2006; Worchel and Alexa 2023]), do not handle empty space because they are not volume-based.

Using a moment-based approach to approximate the transmittance function (TM-𝑛) yields results close to the shadow ray reference, with the same runtime.

dissolves and the implicit surface disappears, while transmittance

mapping obtains a reasonable reconstruction of the target shape.

The visibility gradients are substantial in this setting: with visibility

detached from the AD graph, e.g. as in nvdiffrecmc [Hasselgren

et al. 2022, Sec.3.1, Shadow Gradients], the reconstruction fails.

We also want to highlight that this optimization, in each iteration,

renders all views (each 190 × 256 pixels) using 128 samples while

maintaining a performance of one iteration per second and reason-

able memory consumption (Figure 16). Approaching this task with

shadow rays would be hopeless without stochastic ray sampling.

7 CONCLUSION

We have shown that measures can be differentiably bounded us-

ing the theory of moments by proving that the lower and upper

bounding functions arising from the truncated Hamburger moment

problem are continuously differentiable in their parameters. As a

consequence, the use of different approximate rendering techniques,

which are based on these bounds, has been justified in the differen-

tiable setting. We have shown that this contributes new approaches

to differentiable shadow mapping and differentiable volumetric visi-

bility, which are not only more principled than existing approaches

but also more accurate and equally efficient.

Limitations and Future Work. The techniques proposed for dif-

ferentiable shadow mapping and volumetric transmittance inherit

the classical limitations of shadow mapping. The approach makes

simplifying assumptions about the light sources such that area

lights or image-based lighting are not supported. Also, the qual-

ity of the approximation depends on the spatial discretization. If

the shadow/transmittance map is too coarse, small structures are

missed; one can increase the resolution, but the memory require-

ments increase as well. Adaptive shadow mapping techniques might

be applicable in this context [Fernando et al. 2001; Lefohn et al. 2007].

Numerical stability is a major challenge of moment-based bounds,

especially for higher orders, as the involved matrices become in-

creasingly ill-conditioned and robust polynomial root finding more

difficult. We have shown that implementations must be designed

around these constraints but our analysis is certainly not exhaus-

tive. For the forward direction, numerical stability has mainly been

investigated for quantization [Peters 2017; Peters and Klein 2015]

and similar exploration could be useful for the backward direction.

Lastly, we have not yet explored applications that show the

full potential of higher-order bounds: the transmittance mapping

framework can be used for differentiable order-independent trans-

parency based on the work by Münstermann et al. [2018], for which

there seems to be a demand, e.g. in the context of Gaussian splat-

ting [Hahlbohm et al. 2024; Keselman and Hebert 2023].

ACKNOWLEDGMENTS

Wewould like to thank the anonymous reviewers for their incredibly

helpful feedback and suggestions. We also thank those who assisted

in the early stages of this project, namely Marcus Zepp for providing

test data and Dimitrios Bogiokas for discussing proofs related to

transmittance representations. We thank Delio Vicini for making

their code for figures publicly available. This work was funded by

the European Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation programme (Grant agreement

No. 101055448, ERC Advanced Grand EMERGE).

We thank and acknowledge the authors of the 3D models appear-

ing in this paper: The Stanford 3D Scanning Repository (Bunny),

Keenan Crane (Spot), Frank ter Haar by AIM@SHAPE (Kitten),

Martin Newell (Utah Teapot), Yughues (Greek Pillar), karlwirbel-

wind (Seated Lion), plaggy (Foam Finger), Jan Nikolai Nelles and

Nora Al-Badri (Nefertiti), Inigo Quilez (3D SDFs), Taha Arslan

(Shelf).

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://github.com/rgl-epfl/differentiable-sdf-rendering
https://graphics.stanford.edu/data/3Dscanrep/
https://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/
http://holmes3d.net/graphics/teapot/
https://opengameart.org/content/free-pillars-models
https://sketchfab.com/3d-models/cc0-seated-lion-ready-to-unity-hdrp-c2491d01807640a48a893207528f65ee
https://sketchfab.com/3d-models/cc0-foam-finger-e6bd2d2a8bf24d13947941cdc4a56f32
https://nefertitihack.alloversky.com/
https://iquilezles.org/articles/distfunctions/
https://www.sharetextures.com/models/furniture/shelf_2

16 • Worchel and Alexa

Im
ag

es
 (T

ar
ge

t)

Geometry (Ref.)

V
SM

Scene (Init.), Iter. = 0

exp(s) = 2.72

Scene (Opt.), Iter. = 300

exp(s) = 0.10

Geometry (Opt.)

Time: 04:08 min
Peak Mem.: 10.72 GiB

TM
-3

471.80 05:06 min
13.98 GiB

TM
-3

 (w
/o

 V
is

.D
er

iv
.) 446.13 04:28 min

10.55 GiB

Fig. 16. Multi-view 3D reconstruction with differentiable volume rendering

using approximate visibility. Shadow mapping (VSM) provides an inaccu-

rate estimate of visibility, leading to divergence of the optimization. The

principled moment-based technique (TM-3) succeeds, at slightly higher run-

time and memory consumption. When visibility gradients are detached, the

reconstruction fails (last row). Light and albedo are assumed to be known.

REFERENCES

N. I. Akhiezer. 1965. The Classical Moment Problem and Some Related Questions in

Analysis (1 ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA.

arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611976397 https://epubs.siam.

org/doi/abs/10.1137/1.9781611976397

N. I. Akhiezer and M. G. Kreı̆n. 1962. Some questions in the theory of moments. Vol. 2.

American Mathematical Soc.

Thomas Annen, Tom Mertens, Philippe Bekaert, Hans-Peter Seidel, and Jan Kautz.

2007. Convolution Shadow Maps. In Proceedings of the 18th Eurographics Conference

on Rendering Techniques (Grenoble, France) (EGSR’07). Eurographics Association,

Goslar, DEU, 51–60.

Thomas Annen, Tom Mertens, Hans-Peter Seidel, Eddy Flerackers, and Jan Kautz.

2008. Exponential Shadow Maps. In Proceedings of Graphics Interface 2008 (Windsor,

Ontario, Canada) (GI ’08). Canadian Information Processing Society, CAN, 155–161.

Sai Praveen Bangaru, Lifan Wu, Tzu-Mao Li, Jacob Munkberg, Gilbert Bernstein,

Jonathan Ragan-Kelley, Frédo Durand, Aaron Lefohn, and Yong He. 2023. SLANG.D:

Fast, Modular and Differentiable Shader Programming. ACM Trans. Graph. 42, 6,

Article 264 (dec 2023), 28 pages.

Ȧke Björck and Victor Pereyra. 1970. Solution of Vandermonde systems of equations.

Mathematics of computation 24, 112 (1970), 893–903.

Cyril Delalandre, Pascal Gautron, Jean-Eudes Marvie, and Guillaume François. 2011.

Transmittance function mapping (I3D ’11). Association for Computing Machinery,

New York, NY, USA, 31–38.

Thomas Deliot, Eric Heitz, and Laurent Belcour. 2024. Transforming a Non-

Differentiable Rasterizer into a Differentiable One with Stochastic Gradient Es-

timation. Proc. ACM Comput. Graph. Interact. Tech. 7, 1, Article 3 (may 2024),

16 pages.

Miles Detrixhe, Frédéric Gibou, and Chohong Min. 2013. A parallel fast sweeping

method for the Eikonal equation. J. Comput. Phys. 237 (2013), 46–55.

WilliamDonnelly andAndrew Lauritzen. 2006. Variance ShadowMaps. In Proceedings of

the 2006 Symposium on Interactive 3D Graphics and Games (Redwood City, California)

(I3D ’06). Association for Computing Machinery, New York, NY, USA, 161–165.

Randima Fernando, Sebastian Fernandez, Kavita Bala, and Donald P. Greenberg. 2001.

Adaptive Shadow Maps. In Proceedings of the 28th Annual Conference on Computer

Graphics and Interactive Techniques (SIGGRAPH ’01). Association for Computing

Machinery, New York, NY, USA, 387–390.

Géza Freud. 1969. Orthogonale Polynome. Birkhäuser Basel, Basel.

Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen, Kangxue Yin, Daiqing Li, Or

Litany, Zan Gojcic, and Sanja Fidler. 2022. GET3D: A Generative Model of High

Quality 3D Textured Shapes Learned from Images. InAdvances In Neural Information

Processing Systems.

Florian Hahlbohm, Fabian Friederichs, Tim Weyrich, Linus Franke, Moritz Kappel,

Susana Castillo, Marc Stamminger, Martin Eisemann, and Marcus Magnor. 2024.

Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency.

arXiv preprint arXiv:2410.08129 (2024).

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli

Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.

Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew

Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre

Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,

Christoph Gohlke, and Travis E. Oliphant. 2020. Array programming with NumPy.

Nature 585, 7825 (Sept. 2020), 357–362.

Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg. 2022. Shape, Light, and

Material Decomposition from Images using Monte Carlo Rendering and Denoising.

arXiv:2206.03380 (2022).

Nicholas J Higham. 1987. Error analysis of the Björck-Pereyra algorithms for solving

Vandermonde systems. Numer. Math. 50 (1987), 613–632.

Wenzel Jakob. 2022. nanobind: tiny and efficient C++/Python bindings.

https://github.com/wjakob/nanobind.

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David, Delio Vicini,

Tizian Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy, and Ziyi Zhang.

2022b. Mitsuba 3 renderer. https://mitsuba-renderer.org.

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. 2022a. DR.JIT:

A Just-in-Time Compiler for Differentiable Rendering. ACM Trans. Graph. 41, 4,

Article 124 (jul 2022), 19 pages.

Jon Jansen and Louis Bavoil. 2010. Fourier opacity mapping. In Proceedings of the 2010

ACM SIGGRAPH symposium on Interactive 3D Graphics and Games. 165–172.

W. Kahan. 2004. On the cost of floating-point computation without extra-precise

arithmetic. (2004).

James T. Kajiya and Brian P Von Herzen. 1984. Ray Tracing Volume Densities. In

Proceedings of the 11th Annual Conference on Computer Graphics and Interactive

Techniques (SIGGRAPH ’84). Association for Computing Machinery, New York, NY,

USA, 165–174.

Leonid Keselman and Martial Hebert. 2023. Flexible techniques for differentiable

rendering with 3d gaussians. arXiv preprint arXiv:2308.14737 (2023).

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.

In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,

CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann

LeCun (Eds.). http://arxiv.org/abs/1412.6980

M. G. Kreı̆n and A. A. Nudel’man. 1977. The Markov Moment Problem and Extremal Prob-

lems. Translations of Mathematical Monographs, Vol. 50. American Mathematical

Society.

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo

Aila. 2020. Modular Primitives for High-Performance Differentiable Rendering.

ACM Trans. Graph. 39, 6, Article 194 (nov 2020), 14 pages.

Aaron E. Lefohn, Shubhabrata Sengupta, and John D. Owens. 2007. Resolution-Matched

Shadow Maps. ACM Trans. Graph. 26, 4 (oct 2007), 20–es.

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable

Monte Carlo Ray Tracing through Edge Sampling. ACM Trans. Graph. 37, 6, Article

222 (dec 2018), 11 pages.

Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Taylor, Mathias Unberath, Ming-

Yu Liu, and Chen-Hsuan Lin. 2023. Neuralangelo: High-Fidelity Neural Surface

Reconstruction. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

Ruofan Liang, Jiahao Zhang, Haoda Li, Chen Yang, Yushi Guan, and Nandita Vijaykumar.

2022. SPIDR: SDF-based Neural Point Fields for Illumination and Deformation. arXiv

preprint arXiv:2210.08398 (2022).

Selena Ling, Nicholas Sharp, and Alec Jacobson. 2022. VectorAdam for rotation equi-

variant geometry optimization. In Proceedings of the 36th International Conference

on Neural Information Processing Systems (New Orleans, LA, USA) (NIPS ’22). Curran

Associates Inc., Red Hook, NY, USA, Article 297, 12 pages.

Ruoshi Liu, Sachit Menon, Chengzhi Mao, Dennis Park, Simon Stent, and Carl Vondrick.

2023. What You Can Reconstruct From a Shadow. In Proceedings of the IEEE/CVF

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611976397
https://epubs.siam.org/doi/abs/10.1137/1.9781611976397
https://epubs.siam.org/doi/abs/10.1137/1.9781611976397
http://arxiv.org/abs/1412.6980

Moment Bounds are Differentiable • 17

Conference on Computer Vision and Pattern Recognition (CVPR). 17059–17068.

Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. 2019. Soft Rasterizer: A Differentiable

Renderer for Image-based 3D Reasoning. The IEEE International Conference on

Computer Vision (ICCV) (Oct 2019).

Tom Lokovic and Eric Veach. 2000. Deep Shadow Maps. In Proceedings of the 27th

Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH

’00). ACM Press/Addison-Wesley Publishing Co., USA, 385–392.

Fujun Luan, Shuang Zhao, Kavita Bala, and Zhao Dong. 2021. Unified Shape and

SVBRDF Recovery using Differentiable Monte Carlo Rendering. Computer Graphics

Forum (2021).

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-

mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields

for View Synthesis. In ECCV.

Niloy J. Mitra and Mark Pauly. 2009. Shadow Art. ACM Trans. Graph. 28, 5 (dec 2009),

1–7.

Jacob Munkberg, Wenzheng Chen, Jon Hasselgren, Alex Evans, Tianchang Shen,

Thomas Müller, Jun Gao, and Sanja Fidler. 2022. Extracting Triangular 3D Models,

Materials, and Lighting From Images. In 2022 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 8270–8280.

Cedrick Münstermann, Stefan Krumpen, Reinhard Klein, and Christoph Peters. 2018.

Moment-Based Order-Independent Transparency. Proc. ACM Comput. Graph. Inter-

act. Tech. 1, 1, Article 7 (jul 2018), 20 pages.

Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. 2021. Large Steps in Inverse Ren-

dering of Geometry. ACM Trans. Graph. 40, 6, Article 248 (dec 2021), 13 pages.

Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz, andWenzel Jakob. 2020. Radiative

Backpropagation: An Adjoint Method for Lightning-Fast Differentiable Rendering.

ACM Trans. Graph. 39, 4, Article 146 (aug 2020), 15 pages.

Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2:

A Retargetable Forward and Inverse Renderer. ACM Trans. Graph. 38, 6, Article 203

(nov 2019), 17 pages.

Michael Oechsle, Songyou Peng, and Andreas Geiger. 2021. UNISURF: Unifying Neural

Implicit Surfaces and Radiance Fields for Multi-View Reconstruction. In Proceedings

of the IEEE/CVF International Conference on Computer Vision (ICCV). 5589–5599.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,

Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.

2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In

Proceedings of the 33rd International Conference on Neural Information Processing

Systems. Curran Associates Inc., Red Hook, NY, USA, Article 721, 12 pages.

Christoph Peters. 2017. Non-linearly quantized moment shadow maps. In Proceedings

of High Performance Graphics (Los Angeles, California) (HPG ’17). Association for

Computing Machinery, New York, NY, USA, Article 15, 11 pages.

Christoph Peters. 2023. Finding Real Polynomial Roots on GPUs. https://

momentsingraphics.de/GPUPolynomialRoots.html.

Christoph Peters and Reinhard Klein. 2015. Moment ShadowMapping. In Proceedings of

the 19th Symposium on Interactive 3D Graphics and Games (San Francisco, California)

(i3D ’15). Association for Computing Machinery, New York, NY, USA, 7–14.

Christoph Peters, Sebastian Merzbach, Johannes Hanika, and Carsten Dachsbacher.

2019. Using moments to represent bounded signals for spectral rendering. ACM

Trans. Graph. 38, 4, Article 136 (jul 2019), 14 pages.

Christoph Peters, Cedrick Munstermann, Nico Wetzstein, and Reinhard Klein. 2016.

Beyond hard shadows: moment shadow maps for single scattering, soft shadows

and translucent occluders. In Proceedings of the 20th ACM SIGGRAPH Symposium on

Interactive 3D Graphics and Games (Redmond, Washington) (I3D ’16). Association

for Computing Machinery, New York, NY, USA, 159–170.

Stanislav Pidhorskyi, Tomas Simon, Gabriel Schwartz, He Wen, Yaser Sheikh, and Jason

Saragih. 2025. Rasterized Edge Gradients: Handling Discontinuities Differentiably.

In Computer Vision – ECCV 2024, Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga

Russakovsky, Torsten Sattler, and Gül Varol (Eds.). Springer Nature Switzerland,

Cham, 335–352.

Wentian Qu, Zhaopeng Cui, Yinda Zhang, Chenyu Meng, Cuixia Ma, Xiaoming Deng,

and Hongan Wang. 2023. Novel-View Synthesis and Pose Estimation for Hand-

Object Interaction from Sparse Views. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV). 15100–15111.

William T. Reeves, David H. Salesin, and Robert L. Cook. 1987. Rendering Antialiased

Shadows with Depth Maps. SIGGRAPH Comput. Graph. 21, 4 (aug 1987), 283–291.

Frédéric Riesz. 1911. Sur certains systèmes singuliers d’équations intégrales. Annales

scientifiques de l’École Normale Supérieure 28 (1911), 33–62. http://eudml.org/doc/

81305

M Salvi. 2008. Probabilistic approaches to shadow maps filtering, February. In A talk

in the tutorial" Core Techniques and Algorithms in Shader Programming" at Game

Developers Conference.

Steven A Shafer and Takeo Kanade. 1983. Using shadows in finding surface orientations.

Computer Vision, Graphics, and Image Processing 22, 1 (1983), 145–176. https:

//www.sciencedirect.com/science/article/pii/0734189X83900993

Brian Sharpe. 2018. Moment transparency. In Proceedings of the Conference on High-

Performance Graphics (Vancouver, British Columbia, Canada) (HPG ’18). Association

for Computing Machinery, New York, NY, USA, Article 8, 4 pages.

Gilbert Strang. 2007. Computational Science and Engi-

neering. Wellesley-Cambridge Press, Philadelphia, PA.

arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9780961408817 https:

//epubs.siam.org/doi/abs/10.1137/1.9780961408817

G. Szegő. 1975. Orthogonal Polynomials. American Mathematical Society.

Árpád Tari. 2005. Moments based bounds in stochastic models. Ph.D. dissertation.

Budapest University of Technology and Economics.

Árpád Tari, Miklós Telek, and Peter Buchholz. 2005. A Unified Approach to theMoments

Based Distribution Estimation – Unbounded Support. In Formal Techniques for

Computer Systems and Business Processes, Mario Bravetti, Leïla Kloul, and Gianluigi

Zavattaro (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 79–93.

Kushagra Tiwary, Tzofi Klinghoffer, and Ramesh Raskar. 2022. Towards Learning

Neural Representations from Shadows. In Computer Vision – ECCV 2022, Shai Avidan,

Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner (Eds.).

Springer Nature Switzerland, Cham, 300–316.

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2021. Path Replay Backpropagation:

Differentiating Light Paths Using Constant Memory and Linear Time. ACM Trans.

Graph. 40, 4, Article 108 (jul 2021), 14 pages.

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2022. Differentiable Signed Distance

Function Rendering. ACM Trans. Graph. 41, 4, Article 125 (jul 2022), 18 pages.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping

Wang. 2021. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for

Multi-view Reconstruction. NeurIPS (2021).

LanceWilliams. 1978. Casting Curved Shadows on Curved Surfaces. In Proceedings of the

5th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH

’78). Association for Computing Machinery, New York, NY, USA, 270–274.

Markus Worchel and Marc Alexa. 2023. Differentiable Shadow Mapping for Efficient

Inverse Graphics. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR). 142–153.

Markus Worchel, Rodrigo Diaz, Weiwen Hu, Oliver Schreer, Ingo Feldmann, and Peter

Eisert. 2022. Multi-View Mesh Reconstruction With Neural Deferred Shading. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 6187–6197.

Wenqi Yang, Guanying Chen, Chaofeng Chen, Zhenfang Chen, and Kwan-Yee K. Wong.

2022. S
3
-NeRF: Neural Reflectance Field from Shading and Shadow under a Single

Viewpoint. In Conference on Neural Information Processing Systems (NeurIPS).

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. 2021. Volume rendering of

neural implicit surfaces. In Thirty-Fifth Conference on Neural Information Processing

Systems.

Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Basri Ronen, and

Yaron Lipman. 2020. Multiview Neural Surface Reconstruction by Disentangling

Geometry and Appearance. Advances in Neural Information Processing Systems 33

(2020).

Cem Yuksel. 2022. High-performance polynomial root finding for graphics. Proceedings

of the ACM on Computer Graphics and Interactive Techniques 5, 3 (2022), 1–15.

Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020. Path-

Space Differentiable Rendering. ACM Trans. Graph. 39, 4, Article 143 (aug 2020),

19 pages.

Kai Zhang, Fujun Luan, Zhengqi Li, and Noah Snavely. 2022. IRON: Inverse Rendering

by Optimizing Neural SDFs and Materials From Photometric Images. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

5565–5574.

Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and Noah Snavely. 2021. PhySG:

Inverse Rendering with Spherical Gaussians for Physics-based Material Editing and

Relighting. In The IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR).

Ziyi Zhang, Nicolas Roussel, and Wenzel Jakob. 2023. Projective Sampling for Differen-

tiable Rendering of Geometry. Transactions on Graphics (Proceedings of SIGGRAPH

Asia) 42, 6 (Dec. 2023).

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://momentsingraphics.de/GPUPolynomialRoots.html
https://momentsingraphics.de/GPUPolynomialRoots.html
http://eudml.org/doc/81305
http://eudml.org/doc/81305
https://www.sciencedirect.com/science/article/pii/0734189X83900993
https://www.sciencedirect.com/science/article/pii/0734189X83900993
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780961408817
https://epubs.siam.org/doi/abs/10.1137/1.9780961408817
https://epubs.siam.org/doi/abs/10.1137/1.9780961408817

18 • Worchel and Alexa

Table 1. Accuracy of the implementations, measured as average over 1

Million random samples { (m𝑘 , 𝜂𝑘) }.

32 bits 64 bits

Δm Δm Δ 𝜕𝐵
𝜕m Δ 𝜕𝐵

𝜕𝜂

n = 1

PyTorch 1.70e-07 3.26e-16 3.54e-07 2.20e-07

C++ 1.68e-07 3.20e-16 3.54e-07 2.20e-07

2

PyTorch 1.53e-05 2.58e-14 2.27e-06 8.37e-07

C++ 3.14e-06 5.93e-15 2.27e-06 8.37e-07

3

PyTorch 7.07e-04 1.47e-12 1.90e-05 3.12e-06

C++ 2.51e-04 4.80e-13 1.90e-05 3.12e-06

4

PyTorch 1.56e-01 2.63e-10 3.46e-04 9.08e-06

C++ 3.96e-02 1.00e-10 3.46e-04 9.08e-06

5

PyTorch – 1.10e-08 5.79e-03 2.82e-05

C++ – 2.86e-09 5.79e-03 2.82e-05

A ACCURACY VERIFICATION RESULTS

Table 1 reports the results from the accuracy verification (Section 5.2,

Paragraph Accuracy Verification), which has the purpose of empiri-

cally validating the accuracy of the (custom) C++/CUDA implemen-

tation (not establishing a ranking over accuracy). From 1 Million

random samples, ones with a singular Hankel matrix or 𝜂 near a

singularity are omitted. For a positive moment vector m𝑘 and a

given 𝜂𝑘 , m𝑘 can be reconstructed from the roots and weights com-

puted by the primal procedure (assuming no biasing). Δm is the

Euclidean distance between a moment vector and its reconstruction

∥m𝑘 −
∑𝑛
𝑖=0

𝑤𝑖u(𝑥𝑖)∥, where u(𝑥) = (1, 𝑥, 𝑥2, ..., 𝑥2𝑛)⊤ evaluates the

moment curve (c.f. Theorem 1). With larger 𝑛, the moment recon-

struction becomes less meaningful (𝑛 = 5 involves 10th power), so

we omit the measurement for 32-bit precision. Δ 𝜕𝐵
𝜕m and Δ 𝜕𝐵𝜕𝜂 are the

mean absolute error between finite differences and the computed

bound derivative w.r.t. the moments and 𝜂, respectively.

B TRANSMITTANCE AS OPACITY

Differentiable volume rendering frameworks in vision are often

designed in a way that allows simple evaluation of expressions∫ ∞

0

v
(
r(𝑡)

)
𝑇 (𝑡) 𝜎

(
r(𝑡)

)
d𝑡︸ ︷︷ ︸

𝑤
(
r(𝑡)

) , (40)

where v : R3 → R𝑑 is some field (e.g. color or more general fea-

tures) [Li et al. 2023; Mildenhall et al. 2020; Wang et al. 2021]. The

weights are pre-computed such that the numerical integration is

1

𝑁

𝑁∑︁
𝑖=1

v𝑖𝑤𝑖 (41)

Our differentiable volume shadows based on transmittance estimates

can be trivially integrated into such frameworks, which is clear if

one defines transmittance in terms of opacity

𝑇 (𝑡) = 1 −
∫ 𝑡

0

𝑇 (𝑧) 𝜎 (r(𝑧)) d𝑧︸ ︷︷ ︸
opacity

(42)

As an alternative to bounding the absorbance, we bound the opacity,

which is also a non-decreasing measure. The moments can be simply

computed with the weights and the 𝑁 distance samples {𝑡𝑖 }

m =
1

𝑁

𝑁∑︁
𝑖=1

u(𝑡𝑖)𝑤𝑖 (43)

This is equivalent to the approach by Peters et al. [2016].

C PROOFS

This section first introduces useful definitions and theorems regard-

ing orthogonal polynomials (from the literature) and then continues

with our proofs.

C.1 Orthogonal Polynomials

Proposition 15 (e.g. [Akhiezer and Kreĭn 1962, p.4]). If m =

(𝑚0, . . . ,𝑚2𝑛) is strictly positive, the polynomials of the sequence

𝑃0 (𝑥 ; m) = 1

𝑃𝑘 (𝑥 ; m) = det

𝑚0 𝑚1 . . . 𝑚𝑘
𝑚1 𝑚2 𝑚𝑘+1
.
.
.

. . .
.
.
.

𝑚𝑘−1
𝑚𝑘 . . . 𝑚

2𝑘−1

1 𝑥 . . . 𝑥𝑘

are pairwise orthogonal, i.e., 𝔖m{𝑃𝑖𝑃 𝑗 } = 0 for 𝑖 ≠ 𝑗 (c.f. Eq. (9))

under any measure 𝜇 that is a representation of the moments m.

We recall two important facts about orthogonal polynomials

(1) An orthogonal polynomial 𝑃𝑘 has exactly 𝑘 roots, all of which

are real and simple (see, e.g., [Szegő 1975, Theorem 3.3.1,

p.44]).

(2) Two different polynomials 𝑃𝑖 , 𝑃 𝑗 , 𝑖 ≠ 𝑗 do not vanish at the

same time, i.e., they have distinct roots. If 𝑖 = 𝑗 + 1 then the

roots are interlaced

𝑧1 < 𝑦1 < · · · < 𝑧 𝑗 < 𝑦 𝑗 < 𝑧𝑖 ,

where𝑦1, . . . , 𝑦 𝑗 are the roots of 𝑃 𝑗 and 𝑧1, . . . , 𝑧𝑖 are the roots

of 𝑃𝑖 [Szegő 1975, Theorem 3.3.2, p.46]

The {𝑃𝑘 } lead to the polynomial [Freud 1969, p.21]

𝜓𝑛+1 (𝑥 ;𝜂,m) = 𝑃𝑛+1 (𝑥 ; m)𝑃𝑛 (𝜂; m) − 𝑃𝑛+1 (𝜂; m)𝑃𝑛 (𝑥 ; m) . (44)

If 𝜂 is a root of 𝑃𝑛 , 𝜓𝑛+1 has degree 𝑛: 𝑃𝑛+1 cannot vanish at the

same time because it’s orthogonal to 𝑃𝑛 and 𝑃𝑛 has degree 𝑛 by

definition. If 𝜂 is not a root of 𝑃𝑛 , 𝜓𝑛+1 has degree 𝑛 + 1. In either

case, the following result holds:

Theorem 16 ([Akhiezer 1965, Theorem 1.2.2, p.10]). All roots of

𝜓𝑛+1 (𝑥 ;𝜂,m) are real and simple.

The roots of𝜓𝑛+1 are related to the roots of 𝑃𝑛 :

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Moment Bounds are Differentiable • 19

Theorem 17 ([Tari 2005, Theorem A.39]). If 𝜂 is not a root of 𝑃𝑛 ,

the roots 𝑥0, . . . , 𝑥𝑛 of𝜓𝑛+1 and the roots 𝑦1, . . . , 𝑦𝑛 of 𝑃𝑛 interlace

𝑥0 < 𝑦1 < 𝑥1 < · · · < 𝑥𝑛−1 < 𝑦𝑛 < 𝑥𝑛 .

and the significance of𝜓𝑛+1 is its relation to the kernel 𝐾 :

Theorem 18 (Christoffel–Darboux theorem, [Szegő 1975,

Theorem 3.2.2., p.43]). The kernel 𝐾 and𝜓𝑛+1 are related by

𝐾 (𝑥 ;𝜂,m) ∝ 𝜓𝑛+1 (𝑥 ;𝜂,m)
(𝑥 − 𝜂) .

Which yields the following characterization of the roots of 𝐾 :

Corollary 19. The kernel polynomial 𝐾 has the same roots as

𝜓𝑛+1, except for 𝜂, thus all {𝑥𝑖 } are real and simple. Either 𝜂 is not a

root of 𝑃𝑛 , then 𝜓𝑛+1 has 𝑛 + 1 real and simple roots which are the

points 𝑥1, . . . , 𝑥𝑛 and 𝜂. Or 𝜂 is a root of 𝑃𝑛 , then𝜓𝑛+1 has the root 𝜂

and 𝑛 − 1 other roots 𝑥1, . . . , 𝑥𝑛−1.

C.2 Intermediate Statements

For the main results, some properties regarding differentiability are

required. These are proven here.

Lemma 20. The Hankel matrix H is continuously differentiable in

the moments and, if the moments are strictly positive, its inverse H−1

is also continuously differentiable.

Proof. The moments are the entries of the Hankel matrix, so the

first claim is trivially true. For the second claim, we have H−1 =
1

det(H) adj(H). The entries of the adjugate adj(H) and the determi-

nant det(H) are polynomials in the entries of H. By Theorem 4 from

strict positivity follows det(H) > 0, so the second claim holds. □

The orthogonal polynomials depend smoothly on the moments:

Lemma 21. The coefficients of the orthogonal polynomials 𝑃𝑘 (𝑥 ; m)
are infinitely differentiable in the moments m.

Proof. Expanding along the last row of the determinant form

given in Definition 15, we get

𝑃𝑘 (𝑥 ; m) =
𝑛∑︁
𝑗=0

(−1)𝑘+𝑗𝑥 𝑗 det(M𝑘,𝑗), (45)

where det(M𝑘,𝑗) is the (𝑘, 𝑗) minor of the original matrix. The result

is the canonical form of the orthogonal polynomial 𝑃𝑘 with its

coefficients being the determinants of matrices M𝑘,𝑗 formed from

the set of moments. Since the determinant is a polynomial of the

matrix coefficients, the minors are infinitely differentiable in the

moments and so is 𝑃𝑘 . □

It is well known that, if the roots of a polynomial are real and

simple, they are continuously differentiable functions of the coeffi-

cients. For orthogonal polynomials, the roots are real and simple,

which gives the following result:

Corollary 22. The𝑛 roots of the orthogonal polynomials 𝑃𝑘 (𝑥 ; m)
are continuously differentiable functions in the moments.

These observations extend to the roots of𝜓𝑛+1:

Lemma 23. If 𝑃𝑛 (𝜂; m) ≠ 0, the 𝑛 + 1 roots of 𝜓𝑛+1 (𝑥 ;𝜂,m) are
continuously differentiable functions in 𝜂 and m. If 𝑃𝑛 (𝜂; m) = 0, the

𝑛 roots of𝜓𝑛+1 (𝑥 ;𝜂,m) are continuously differentiable in 𝜂 and m.

Proof. Recall that 𝜓𝑛+1 (𝑥 ;𝜂) = 𝑃𝑛+1 (𝑥)𝑃𝑛 (𝜂) − 𝑃𝑛+1 (𝜂)𝑃𝑛 (𝑥)
(Eq. 44). Lemma 21 states that 𝑃𝑛 and 𝑃𝑛+1 are infinitely differ-

entiable in 𝜂 and m, and consequently, so are the coefficients of

𝜓𝑛+1. Therefore all real and simple roots of𝜓𝑛+1 are continuously
differentiable in 𝜂 and m. □

C.3 Proof of Theorem 5

Proof. Without loss of generality, we consider the lower bound

𝐿(𝜂; m). Choose any point (𝜂0,m0) ∈ Ω. According to Theorem 2,

a unique canonical representation exists with points {𝑥𝑖 (𝜂0; m0)}
and 𝜂0 where the points can be ordered accordingly

𝑥0 < · · · < 𝑥𝑘−1
< 𝑥𝑘 (= 𝜂0) < 𝑥𝑘+1 < · · · < 𝑥𝑛 . (46)

Take another point (𝜂1,m1) ∈ Ω in the domain. Without loss of

generality, assume that at (𝜂1,m1) more of the {𝑥𝑖 } are larger than
𝜂1, i.e., the number of terms in 𝐿(𝜂0; m0) is greater than in 𝐿(𝜂1; m1).

The moments m0 and m1 are in the convex cone of the moment

curve and 𝜂0 and 𝜂1 are in R, so the points can be connected with

an arbitrary, continuously differentiable curve

𝜸 (𝜏) =
(
𝜂 (𝜏),m(𝜏)

)
∈ R × R2𝑛+1, (47)

with 𝜸 (0) = (𝜂0,m0) and 𝜸 (1) = (𝜂1,m1).
Let us assume the opposite of the claim: for all 𝜏 ∈ (0, 1) the curve

is part of the domain, i.e., 𝜸 (𝜏) ∈ Ω, so that at no point is 𝜂 (𝜏) a
root of 𝑃𝑛 and the moments m(𝜏) are strictly positive.

The polynomial𝜓𝑛+1
(
𝑥 ;𝜂 (𝜏),m(𝜏)

)
, therefore, has 𝑛 + 1 real and

simple roots along the curve, which are, according to Corollary 19,

the 𝑥0, . . . , 𝑥𝑛 , including 𝜂. The order of roots at (𝜂0,m0) identifies
each root uniquely and we can define a function

𝑔𝑖 (𝜏) = 𝑥𝑖
(
𝜂 (𝜏); m(𝜏)

)
− 𝜂 (𝜏), (48)

which indicates if root 𝑥𝑖 is greater or smaller than 𝜂. According to

Lemma 23, the roots are continuously differentiable functions for

𝜏 ∈ [0, 1] and so are the functions 𝑔𝑖 .

The number of points greater than 𝜂 is larger at 𝜂1 than at 𝜂0, so

there is at least one 𝑥 𝑗 ≠ 𝜂0 such that

𝑔 𝑗 (0) < 0 and 𝑔 𝑗 (1) > 0, (49)

i.e., 𝑥 𝑗 “switches” places with 𝜂 on the path. Since 𝜸 is continuous

and 𝑔𝑖 is continuous, according to the intermediate value theorem,

there exists one 𝜏 ′ ∈ (0, 1) where

𝑔 𝑗
(
𝜏 ′
)
= 0, (50)

which however is a contradiction because along the curve the 𝑛 + 1

roots of𝜓𝑛+1 are real and simple. Therefore, at some point along 𝜸 ,
either the sequence of moments m(𝜏) is not strictly positive or 𝜂 (𝜏)
is a root of 𝑃𝑛

(
𝑥 ; m(𝜏)

)
. □

C.4 Proof of Theorem 7

Proof. Recall that, according to Equation 17, the weights are

𝑤𝑖 =
1

x⊤
𝑖

H−1x𝑖
.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

20 • Worchel and Alexa

The vectors x𝑖 consist of monomials in the roots 𝑥𝑖 (Equation 14) and

the roots are continuously differentiable (Lemma 23). H−1
is contin-

uously differentiable (Lemma 20). Since m is strictly positive, H is

positive definite and the denominator is > 0. The claim now follows

from the properties of function composition and differentiability of

matrix multiplication. □

C.5 Proof of Theorem 9

Proof. Without loss of generality, assume (𝜂0,m0) ∈ Ω such

that 𝑥 𝑗 (= 𝜂0) > 𝑥0 approaches 𝑦 𝑗 , as the other case can be treated

equally. The roots {𝑥𝑖 (𝜂,m)}𝑛𝑖=0
of the polynomial 𝜓𝑛+1 (Corol-

lary 19) and the roots {𝑦𝑖 (m)}𝑛𝑖=1
of the polynomial 𝑃𝑛 strictly

interlace at (𝜂0,m0) (Theorem 17).

Let (𝜂1,m1) ∈ Λ be a point on the singularity, such that 𝑃𝑛 (𝜂1,m1) =
0. The roots of 𝑃𝑛 are continuously differentiable functions in (𝜂,m)
(Lemma 23), so the order established at (𝜂0,m0) is maintained along

a continuously differentiable path from (𝜂0,m0) to (𝜂1,m1). Each
𝑦 𝑗 can be uniquely identified from which follows that 𝑦 𝑗 (m0) <
𝑥 𝑗 (𝜂0,m0) (= 𝜂0) < 𝑦 𝑗+1 (m0) and 𝑦 𝑗 (m1) = 𝜂1.

At (𝜂1,m1) ∈ Λ, the roots of 𝜓𝑛+1 are the 𝑛 roots of 𝑃𝑛 (see

Eq. (44)). The roots of𝜓𝑛+1 are continuously differentiable functions
of 𝜂 and m (Lemma 23), and in particular they are at (𝜂1,m1). There-
fore, if the path is reversed, it is a continuously differentiable path

from the roots of 𝑃𝑛 (m1) to 𝑛 of the roots of𝜓𝑛+1 (𝑥 ;𝜂0,m0).
By construction, 𝑥 𝑗 (= 𝜂0) follows a continuously differentiable

path to 𝑦 𝑗 (= 𝜂1), so its reverse is a continuously differentiable path

from 𝑦 𝑗 to 𝑥 𝑗 . If 𝑦 𝑗+1 exists, it must correspond to the root 𝑥 𝑗+1: it
cannot correspond to any root ≤ 𝑥 𝑗 as the roots of𝜓𝑛+1 are simple

on the path (Lemma 16) and it cannot correspond to any root ≥ 𝑥 𝑗+2
because the 𝑥𝑖 and 𝑦𝑖 strictly interlace on the path and there is

𝑥 𝑗+1 < 𝑦 𝑗+2 < 𝑥 𝑗+2. A similar argument holds for 𝑦 𝑗−1 if it exists.

This establishes an order such that every 𝑦 𝑗 at (𝜂1,m1) corresponds
to 𝑥 𝑗 at (𝜂0,m0).
Therefore, the only root without a corresponding 𝑦 at (𝜂1,m1)

is 𝑥0.𝜓𝑛+1 is a degree 𝑛 + 1 polynomial that is reduced to a degree

𝑛 polynomial on a continuously differentiable path from (𝜂0,m0)
to (𝜂1,m1), so its leading coefficient 𝑎𝑛+1 is taken to zero on the

path. As 𝑎𝑛+1 vanishes, the roots 𝑥1 < · · · < 𝑥𝑛 remain finite, and

therefore the root 𝑥0 is unbounded and must go to −∞. □

C.6 Proof of Lemma 12

Proof. Recall the definition of the weights𝑤𝑘 = 1

x⊤
𝑘

H−1x𝑘
. Since

the moment-generating measures are finite, the moments are finite,

and therefore, there is an upper bound on the eigenvalues of H.

Consequently, there is a lower bound on the eigenvalues of H−1
. H

is positive-definite for strictly positive moments (Theorem 4) and

so is H−1
. As 𝑥𝑘 → ±∞, the norm grows ∥x𝑘 ∥2 →∞, from which

follows that x⊤
𝑘

H−1x𝑘 →∞ and𝑤𝑘 → 0. □

C.7 Proof of Lemma 13

Proof. We first prove the case for the derivative
𝜕𝑤𝑘

𝜕𝜂 , which by

the chain rule is

𝜕𝑤𝑘

𝜕𝜂
=
𝜕𝑤𝑘

𝜕x𝑘

𝜕x𝑘
𝜕𝑥𝑘

𝜕𝑥𝑘

𝜕𝜂
, (51)

since H−1
is independent of 𝜂. The point 𝑥𝑘 is a root of the kernel

polynomial 𝐾 , which is explicitly given as (Eq. (16))

𝐾 (𝑥) = x⊤H−1𝜼. (52)

The implicit function theorem relates 𝜂 to the root

𝜕𝑥𝑘

𝜕𝜂
= −

x⊤
𝑘

H−1 𝜕𝜼
𝜕𝜂

𝜼⊤H−1
𝜕x𝑘
𝜕𝑥𝑘

. (53)

The other factor can be directly expressed using Eq. (17)

𝜕𝑤𝑘

𝜕x𝑘
= −2

x⊤
𝑘

H−1(
x⊤
𝑘

H−1x𝑘
)
2
. (54)

The complete derivative therefore is

𝜕𝑤𝑘

𝜕𝜂
= 2

x⊤
𝑘

H−1 𝜕x𝑘
𝜕𝑥𝑘

x⊤
𝑘

H−1 𝜕𝜼
𝜕𝜂(

x⊤
𝑘

H−1x𝑘
)
2𝜼⊤H−1

𝜕x𝑘
𝜕𝑥𝑘

(55)

The derivative is a rational function in 𝑥𝑘 and the limit is de-

termined through the (ratio of) degrees of the numerator and the

denominator. We assume full degree in the numerator (3𝑛 − 1).

Notice that the point (𝜂,m) is bounded and finite, and conse-

quently so areH−1
,𝜼, and

𝜕𝜼
𝜕𝜂 . The quadratic part in the denominator

is positive because the eigenvalues of H−1
are bounded from below

(m is strictly positive) and the quadratic part necessarily has full

degree (4𝑛) because its leading coefficient is the leading coefficient

of full-degree 𝑃𝑛 (the last row/column of H−1
are the coefficients of

𝑃𝑛 [Tari 2005, Lemma A.26]). The second part of the denominator,

𝐾 ′ (𝑥𝑘) = 𝜼⊤H−1 𝜕x𝑘
𝜕𝑥𝑘

, is the derivative of the kernel at its root 𝑥𝑘 .

The kernel roots are real and simple inside Ω, so the derivative is
non-zero in the domain. At a singularity, the kernel has degree 𝑛− 1

and the derivative reduces to degree 𝑛 − 2, with non-zero coeffi-

cient 𝑐𝑛−1 (Corollary 19). For the case 𝑛 = 1, the derivative is the

vanishing coefficient 𝑐1, which can be reparameterized in the root

as 𝑐1 = − 𝑐0

𝑥𝑘
. Since H−1

has full rank and

[
𝑐0 𝑐1

]
= 𝜼⊤H−1

, the

coefficient 𝑐0 cannot vanish at the same time as 𝑐1. The denominator

therefore has minimal degree 5𝑛 − 2.

We bound the derivative from above, assuming full degree in the

numerator and minimal degree in the denominator:���� 𝜕𝑤𝑘𝜕𝜂 ���� ≤ 𝑐 �����𝑥3𝑛−1

𝑘

𝑥5𝑛−2

𝑘

����� , 𝑐 > 0. (56)

The upper bound goes to 0 as 𝑥𝑘 → ±∞ and so does
𝜕𝑤𝑘

𝜕𝜂 . □

Proof. We continue with the derivative
𝜕𝑤𝑘

𝜕m , and consider only

a single moment𝑚𝑖 (0 ≤ 𝑖 ≤ 2𝑛) without loss of generality. By the

chain rule the derivative is

𝜕𝑤𝑘

𝜕𝑚𝑖
=

〈
𝜕𝑤𝑘

𝜕H−1
,
𝜕H−1

𝜕𝑚𝑖

〉
+ 𝜕𝑤𝑘
𝜕x𝑘

𝜕x𝑘
𝜕𝑥𝑘

𝜕𝑥𝑘

𝜕𝑚𝑖
, (57)

where ⟨A,B⟩ denotes the sum of the element-wise matrix product.

Using the implicit function theorem for the kernel, we get

𝜕𝑥𝑘

𝜕𝑚𝑖
= −

〈
x𝑘𝜼⊤

𝜼⊤H−1
𝜕x𝑘
𝜕𝑥𝑘

,
𝜕H−1

𝜕𝑚𝑖

〉
(58)

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Moment Bounds are Differentiable • 21

and from Eq. 17 we also have

𝜕𝑤𝑘

𝜕H−1
= −

x𝑘x⊤
𝑘(

x⊤
𝑘

H−1x𝑘
)
2
, (59)

which yields the full derivative

𝜕𝑤𝑘

𝜕𝑚𝑖
=

〈
−

x𝑘x⊤
𝑘(

x⊤
𝑘

H−1x𝑘
)
2
+ 2

x⊤
𝑘

H−1 𝜕x𝑘
𝜕𝑥𝑘

x𝑘𝜼⊤(
x⊤
𝑘

H−1x𝑘
)
2𝜼⊤H−1

𝜕x𝑘
𝜕𝑥𝑘︸ ︷︷ ︸

A

,
𝜕H−1

𝜕𝑚𝑖

〉
.

(60)

The second argument,
𝜕H−1

𝜕𝑚𝑖
, remains finite and the result is a linear

combination of the entries of the matrix A ∈ R(𝑛+1)×(𝑛+1) . So, we
now study the entries of the matrix A and their limit behavior.

Expanding the terms to the same denominator gives

A =
−x𝑘x⊤

𝑘
𝜼⊤H−1 𝜕x𝑘

𝜕𝑥𝑘
+ 2x⊤

𝑘
H−1 𝜕x𝑘

𝜕𝑥𝑘
x𝑘𝜼⊤(

x⊤
𝑘

H−1x𝑘
)
2𝜼⊤H−1

𝜕x𝑘
𝜕𝑥𝑘

. (61)

Each entry 𝐴𝑖, 𝑗 of the matrix A = {𝐴𝑖, 𝑗 }𝑛
0
is a rational function in

𝑥𝑘 , with the same denominator as
𝜕𝑤𝑘

𝜕𝜂 (minimal degree 5𝑛− 2). The

entry 𝐴𝑛,𝑛 maximizes the degree of the numerator, so, in the limit,

it gives an upper bound on all other entries. By assuming full degree

in the numerator and minimal degree in the denominator, we get

an upper bound on 𝐴𝑛,𝑛 :��𝐴𝑛,𝑛 �� ≤ 𝑐 �����𝑥3𝑛−1

𝑘

𝑥5𝑛−2

𝑘

����� , 𝑐 > 0. (62)

The upper bound goes to 0 as 𝑥𝑘 → ±∞ and so does
𝜕𝑤𝑘

𝜕𝑚𝑖
. □

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

	Abstract
	1 Introduction
	2 Related Work
	3 Bounding Measures with Moments
	3.1 A Geometric Perspective and General Observations
	3.2 Computing the Unique Canonical Representation

	4 Differentiating Moment-based Bounds
	4.1 Partitioning the Domain
	4.2 Approaching Singularities
	4.3 Weight (Derivative) at Singularities

	5 Implementation
	5.1 Explicit Algorithm and Reverse-Mode Differentiation
	5.2 Fused Implementation

	6 Applications
	6.1 Differentiable Shadow Mapping
	6.2 Differentiable Visibility for Volume Rendering

	7 Conclusion
	Acknowledgments
	References
	A Accuracy Verification Results
	B Transmittance as Opacity
	C Proofs
	C.1 Orthogonal Polynomials
	C.2 Intermediate Statements
	C.3 Proof of Theorem 5
	C.4 Proof of Theorem 7
	C.5 Proof of Theorem 9
	C.6 Proof of Lemma 12
	C.7 Proof of Lemma 13

